I make some performance testing of my PoC. What I saw is my actor is not receiving all messages that are sent to him and the performance is very low. I sent around 150k messages to my app, and it causes a peak on my processor to reach 100% utilization. But when I stop sending requests 2/3 of messages are not delivered to the actor. Here is a simple metrics from app insights:
To prove I have almost the same number of event persistent in mongo that my actor received messages.
Secondly, performance of processing messages is very disappointing. I get around 300 messages per second.
I know Akka.NET message delivery is at most once by default but I don't get any error saying that message were dropped.
Here is code: Cluster shard registration:
services.AddSingleton<ValueCoordinatorProvider>(provider =>
{
var shardRegion = ClusterSharding.Get(_actorSystem).Start(
typeName: "values-actor",
entityProps: _actorSystem.DI().Props<ValueActor>(),
settings: ClusterShardingSettings.Create(_actorSystem),
messageExtractor: new ValueShardMsgRouter());
return () => shardRegion;
});
Controller:
[ApiController]
[Route("api/[controller]")]
public class ValueController : ControllerBase
{
private readonly IActorRef _valueCoordinator;
public ValueController(ValueCoordinatorProvider valueCoordinatorProvider)
{
_valueCoordinator = valuenCoordinatorProvider();
}
[HttpPost]
public Task<IActionResult> PostAsync(Message message)
{
_valueCoordinator.Tell(message);
return Task.FromResult((IActionResult)Ok());
}
}
Actor:
public class ValueActor : ReceivePersistentActor
{
public override string PersistenceId { get; }
private decimal _currentValue;
public ValueActor()
{
PersistenceId = Context.Self.Path.Name;
Command<Message>(Handle);
}
private void Handle(Message message)
{
Context.IncrementMessagesReceived();
var accepted = new ValueAccepted(message.ValueId, message.Value);
Persist(accepted, valueAccepted =>
{
_currentValue = valueAccepted.BidValue;
});
}
}
Message router.
public sealed class ValueShardMsgRouter : HashCodeMessageExtractor
{
public const int DefaultShardCount = 1_000_000_000;
public ValueShardMsgRouter() : this(DefaultShardCount)
{
}
public ValueShardMsgRouter(int maxNumberOfShards) : base(maxNumberOfShards)
{
}
public override string EntityId(object message)
{
return message switch
{
IWithValueId valueMsg => valueMsg.ValueId,
_ => null
};
}
}
akka.conf
akka {
stdout-loglevel = ERROR
loglevel = ERROR
actor {
debug {
unhandled = on
}
provider = cluster
serializers {
hyperion = "Akka.Serialization.HyperionSerializer, Akka.Serialization.Hyperion"
}
serialization-bindings {
"System.Object" = hyperion
}
deployment {
/valuesRouter {
router = consistent-hashing-group
routees.paths = ["/values"]
cluster {
enabled = on
}
}
}
}
remote {
dot-netty.tcp {
hostname = "desktop-j45ou76"
port = 5054
}
}
cluster {
seed-nodes = ["akka.tcp://valuessystem@desktop-j45ou76:5054"]
}
persistence {
journal {
plugin = "akka.persistence.journal.mongodb"
mongodb {
class = "Akka.Persistence.MongoDb.Journal.MongoDbJournal, Akka.Persistence.MongoDb"
connection-string = "mongodb://localhost:27017/akkanet"
auto-initialize = off
plugin-dispatcher = "akka.actor.default-dispatcher"
collection = "EventJournal"
metadata-collection = "Metadata"
legacy-serialization = off
}
}
snapshot-store {
plugin = "akka.persistence.snapshot-store.mongodb"
mongodb {
class = "Akka.Persistence.MongoDb.Snapshot.MongoDbSnapshotStore, Akka.Persistence.MongoDb"
connection-string = "mongodb://localhost:27017/akkanet"
auto-initialize = off
plugin-dispatcher = "akka.actor.default-dispatcher"
collection = "SnapshotStore"
legacy-serialization = off
}
}
}
}
So there are two issues going on here: actor performance and missing messages.
It's not clear from your writeup, but I'm going to make an assumption: 100% of these messages are going to a single actor.
The end-to-end throughput of a single actor depends on:
You will have poor performance due to item 3 on this list. The design that you are implementing calls Persist
and blocks the actor from doing any additional processing until the message is successfully persisted. All other messages sent to the actor are stashed internally until the previous one is successfully persisted.
Akka.Persistence offers four options for persisting messages from the point of view of a single actor:
Persist
- highest consistency (no other messages can be processed until persistence is confirmed), lowest performance;PersistAsync
- lower consistency, much higher performance. Doesn't wait for the message to be persisted before processing the next message in the mailbox. Allows multiple messages from a single persistent actor to be processed concurrently in-flight - the order in which those events are persisted will be preserved (because they're sent to the internal Akka.Persistence journal IActorRef
in that order) but the actor will continue to process additional messages before the persisted ones are confirmed. This means you probably have to modify your actor's in-memory state before you call PersistAsync
and not after the fact.PersistAll
- high consistency, but batches multiple persistent events at once. Same ordering and control flow semantics as Persist
- but you're just persisting an array of messages together.PersistAllAsync
- highest performance. Same semantics as PersistAsync
but it's an atomic batch of messages in an array being persisted together.To get an idea as to how the performance characteristics of Akka.Persistence changes with each of these methods, take a look at the detailed benchmark data the Akka.NET organization has put together around Akka.Persistence.Linq2Db, the new high performance RDBMS Akka.Persistence library: https://github.com/akkadotnet/Akka.Persistence.Linq2Db#performance - it's a difference between 15,000 per second and 250 per second on SQL; the write performance is likely even higher in a system like MongoDB.
One of the key properties of Akka.Persistence is that it intentionally routes all of the persistence commands through a set of centralized "journal" and "snapshot" actors on each node in a cluster - so messages from multiple persistent actors can be batched together across a small number of concurrent database connections. There are many users running hundreds of thousands of persistent actors simultaneously - if each actor had their own unique connection to the database it would melt even the most robustly vertically scaled database instances on Earth. This connection pooling / sharing is why the individual persistent actors rely on flow control.
You'll see similar performance using any persistent actor framework (i.e. Orleans, Service Fabric) because they all employ a similar design for the same reasons Akka.NET does.
To improve your performance, you will need to either batch received messages together and persist them in a group with PersistAll
(think of this as de-bouncing) or use asynchronous persistence semantics using PersistAsync
.
You'll also see better aggregate performance if you spread your workload out across many concurrent actors with different entity ids - that way you can benefit from actor concurrency and parallelism.
There could be any number of reasons why this might occur - most often it's going to be the result of:
DeadLetter
collection;You should look for the following in your logs:
DeadLetter
warnings / countsOpenCircuitBreakerException
s coming from Akka.PersistenceYou'll usually see both of those appear together - I suspect that's what is happening to your system. The other possibility could be Akka.Remote throwing DisassociationException
s, which I would also look for.
You can fix the Akka.Remote issues by changing the heartbeat values for the Akka.Cluster failure-detector
in configuration https://getakka.net/articles/configuration/akka.cluster.html:
akka.cluster.failure-detector {
# FQCN of the failure detector implementation.
# It must implement akka.remote.FailureDetector and have
# a public constructor with a com.typesafe.config.Config and
# akka.actor.EventStream parameter.
implementation-class = "Akka.Remote.PhiAccrualFailureDetector, Akka.Remote"
# How often keep-alive heartbeat messages should be sent to each connection.
heartbeat-interval = 1 s
# Defines the failure detector threshold.
# A low threshold is prone to generate many wrong suspicions but ensures
# a quick detection in the event of a real crash. Conversely, a high
# threshold generates fewer mistakes but needs more time to detect
# actual crashes.
threshold = 8.0
# Number of the samples of inter-heartbeat arrival times to adaptively
# calculate the failure timeout for connections.
max-sample-size = 1000
# Minimum standard deviation to use for the normal distribution in
# AccrualFailureDetector. Too low standard deviation might result in
# too much sensitivity for sudden, but normal, deviations in heartbeat
# inter arrival times.
min-std-deviation = 100 ms
# Number of potentially lost/delayed heartbeats that will be
# accepted before considering it to be an anomaly.
# This margin is important to be able to survive sudden, occasional,
# pauses in heartbeat arrivals, due to for example garbage collect or
# network drop.
acceptable-heartbeat-pause = 3 s
# Number of member nodes that each member will send heartbeat messages to,
# i.e. each node will be monitored by this number of other nodes.
monitored-by-nr-of-members = 9
# After the heartbeat request has been sent the first failure detection
# will start after this period, even though no heartbeat mesage has
# been received.
expected-response-after = 1 s
}
Bump the acceptable-heartbeat-pause = 3 s
value to something larger like 10,20,30 if needed.
One last thing I want to point out with your code - the shard count is way too high. You should have about ~10 shards per node. Reduce it to something reasonable.