I am using H2O DAI 1.9.0.6. I am tring to load custom recipe (BERT pretained model using custom recipe) on Expert settings. I am using local file to upload. However upload is not happning. No error, no progress nothing. After that activity I am not able to see this model under RECIPE tab.
Took Sample Recipe from below URL and Modified for my need. Thanks for the person who created this Recipe.
https://github.com/h2oai/driverlessai-recipes/blob/master/models/nlp/portuguese_bert.py
Custom Recipe
import os import shutil from urllib.parse import urlparse import requests from h2oaicore.models import TextBERTModel, CustomModel from h2oaicore.systemutils import make_experiment_logger, temporary_files_path, atomic_move, loggerinfo def is_url(url): try: result = urlparse(url) return all([result.scheme, result.netloc, result.path]) except: return False def maybe_download_language_model(logger, save_directory, model_link, config_link, vocab_link): model_name = "pytorch_model.bin" if isinstance(model_link, str): model_name = model_link.split('/')[-1] if '.bin' not in model_name: model_name = "pytorch_model.bin" maybe_download(url=config_link, dest=os.path.join(save_directory, "config.json"), logger=logger) maybe_download(url=vocab_link, dest=os.path.join(save_directory, "vocab.txt"), logger=logger) maybe_download(url=model_link, dest=os.path.join(save_directory, model_name), logger=logger) def maybe_download(url, dest, logger=None): if not is_url(url): loggerinfo(logger, f"{url} is not a valid URL.") return dest_tmp = dest + ".tmp" if os.path.exists(dest): loggerinfo(logger, f"already downloaded {url} -> {dest}") return if os.path.exists(dest_tmp): loggerinfo(logger, f"Download has already started {url} -> {dest_tmp}. " f"Delete {dest_tmp} to download the file once more.") return loggerinfo(logger, f"Downloading {url} -> {dest}") url_data = requests.get(url, stream=True) if url_data.status_code != requests.codes.ok: msg = "Cannot get url %s, code: %s, reason: %s" % ( str(url), str(url_data.status_code), str(url_data.reason)) raise requests.exceptions.RequestException(msg) url_data.raw.decode_content = True if not os.path.isdir(os.path.dirname(dest)): os.makedirs(os.path.dirname(dest), exist_ok=True) with open(dest_tmp, 'wb') as f: shutil.copyfileobj(url_data.raw, f) atomic_move(dest_tmp, dest) def check_correct_name(custom_name): allowed_pretrained_models = ['bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', 'xlm-roberta', 'xlm', 'roberta', 'distilbert', 'camembert', 'ctrl', 'albert'] assert len([model_name for model_name in allowed_pretrained_models if model_name in custom_name]), f"{custom_name} needs to contain the name" \ " of the pretrained model architecture (e.g. bert or xlnet) " \ "to be able to process the model correctly." class CustomBertModel(TextBERTModel, CustomModel): """ Custom model class for using pretrained transformer models. The class inherits : - CustomModel that really is just a tag. It's there to make sure DAI knows it's a custom model. - TextBERTModel so that the custom model inherits all the properties and methods. Supported model architecture: 'bert', 'openai-gpt', 'gpt2', 'transfo-xl', 'xlnet', 'xlm-roberta', 'xlm', 'roberta', 'distilbert', 'camembert', 'ctrl', 'albert' How to use: - You have already downloaded the weights, the vocab and the config file: - Set _model_path as the folder where the weights, the vocab and the config file are stored. - Set _model_name according to the pretrained architecture (e.g. bert-base-uncased). - You want to to download the weights, the vocab and the config file: - Set _model_link, _config_link and _vocab_link accordingly. - _model_path is the folder where the weights, the vocab and the config file will be saved. - Set _model_name according to the pretrained architecture (e.g. bert-base-uncased). - Important: _model_path needs to contain the name of the pretrained model architecture (e.g. bert or xlnet) to be able to load the model correctly. - Disable genetic algorithm in the expert setting. """ # _model_path is the full path to the directory where the weights, vocab and the config will be saved. _model_name = NotImplemented # Will be used to create the MOJO _model_path = NotImplemented _model_link = NotImplemented _config_link = NotImplemented _vocab_link = NotImplemented _booster_str = "pytorch-custom" # Requirements for MOJO creation: # _model_name needs to be one of # bert-base-uncased, bert-base-multilingual-cased, xlnet-base-cased, roberta-base, distilbert-base-uncased # vocab.txt needs to be the same as vocab.txt used in _model_name (no custom vocabulary yet). _mojo = False @staticmethod def is_enabled(): return False # Abstract Base model should not show up in models. def _set_model_name(self, language_detected): self.model_path = self.__class__._model_path self.model_name = self.__class__._model_name check_correct_name(self.model_path) check_correct_name(self.model_name) def fit(self, X, y, sample_weight=None, eval_set=None, sample_weight_eval_set=None, **kwargs): logger = None if self.context and self.context.experiment_id: logger = make_experiment_logger(experiment_id=self.context.experiment_id, tmp_dir=self.context.tmp_dir, experiment_tmp_dir=self.context.experiment_tmp_dir) maybe_download_language_model(logger, save_directory=self.__class__._model_path, model_link=self.__class__._model_link, config_link=self.__class__._config_link, vocab_link=self.__class__._vocab_link) super().fit(X, y, sample_weight, eval_set, sample_weight_eval_set, **kwargs) class GermanBertModel(CustomBertModel): _model_name = "bert-base-german-dbmdz-uncased" _model_path = os.path.join(temporary_files_path, "german_bert_language_model/") _model_link = "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/pytorch_model.bin" _config_link = "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json" _vocab_link = "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt" _mojo = True @staticmethod def is_enabled(): return True
Check that your custom recipe has is_enabled()
returning True
.
def is_enabled():
return True