python-3.xnetworkxadjacency-matrixdgl

Build networkx/dgl graph with from numpy representations of feature and adjacency matrix


Description

Generate a graph object (either DGL or NetworkX) from an Adjacency matrix and allow for node features to be established.

Result

I generate my solution below. However, other answers are encouraged.


Solution

  • Code

    import numpy as np
    import dgl
    import networkx as nx
    
    def numpy_to_graph(A,type_graph='dgl',node_features=None):
        '''Convert numpy arrays to graph
    
        Parameters
        ----------
        A : mxm array
            Adjacency matrix
        type_graph : str
            'dgl' or 'nx'
        node_features : dict
            Optional, dictionary with key=feature name, value=list of size m
            Allows user to specify node features
    
        Returns
    
        -------
        Graph of 'type_graph' specification
        '''
        
        G = nx.from_numpy_array(A)
        
        if node_features != None:
            for n in G.nodes():
                for k,v in node_features.items():
                    G.nodes[n][k] = v[n]
        
        if type_graph == 'nx':
            return G
        
        G = G.to_directed()
        
        if node_features != None:
            node_attrs = list(node_features.keys())
        else:
            node_attrs = []
            
        g = dgl.from_networkx(G, node_attrs=node_attrs, edge_attrs=['weight'])
        return g
    

    Example

    The adjacency matrix is passed to the function. Additionally, other features (i.e. Feature vectors, Labels, etc.) can be passed in node_features

    # mxm adjacency matrix
    A = np.array([[0,0,0],
                  [2,0,0],
                  [5,1,0]])
    
    # Each m row is a feature vector for node m
    F = np.array([[1,0,1,4,4],
                 [2,4,0,12,4],
                 [5,1,-4,2,9]])
    
    
    G = numpy_to_graph(A,type_graph='nx',node_features={'feat':F})
    
    import matplotlib.pyplot as plt
    pos=nx.spring_layout(G) # pos = nx.nx_agraph.graphviz_layout(G)
    nx.draw_networkx(G,pos)
    labels = nx.get_edge_attributes(G,'weight')
    nx.draw_networkx_edge_labels(G,pos,edge_labels=labels)
    plt.show()
    

    enter image description here