With PyTorch Tensorboard I can log my train and valid loss in a single Tensorboard graph like this:
writer = torch.utils.tensorboard.SummaryWriter()
for i in range(1, 100):
writer.add_scalars('loss', {'train': 1 / i}, i)
for i in range(1, 100):
writer.add_scalars('loss', {'valid': 2 / i}, i)
How can I achieve the same with Pytorch Lightning's default Tensorboard logger?
def training_step(self, batch: Tuple[Tensor, Tensor], _batch_idx: int) -> Tensor:
inputs_batch, labels_batch = batch
outputs_batch = self(inputs_batch)
loss = self.criterion(outputs_batch, labels_batch)
self.log('loss/train', loss.item()) # creates separate graph
return loss
def validation_step(self, batch: Tuple[Tensor, Tensor], _batch_idx: int) -> None:
inputs_batch, labels_batch = batch
outputs_batch = self(inputs_batch)
loss = self.criterion(outputs_batch, labels_batch)
self.log('loss/valid', loss.item(), on_step=True) # creates separate graph
The doc describe it as self.logger.experiment.some_tensorboard_function()
where some_tensorboard_function is the provided functions from tensorboard so for your question you want to use
self.logger.experiment.add_scalars()
Tensorboard doc for pytorch-lightning can be found here