I am applying quantization to a SSD model. The gist is attached. There is a custom object called "AnchorBoxes" which is added while loading the model. This works fine when I don't do quantization. But when I apply quantization, this custom object is not recognized.
I tried a work around.
def apply_quantization_to_conv2D(layer):
#print(layer)
if isinstance(layer, tf.keras.layers.Conv2D):
return tfmot.quantization.keras.quantize_annotate_layer(layer)
return layer
# Use `tf.keras.models.clone_model` to apply `apply_quantization_to_dense`
# to the layers of the model.
annotated_model = tf.keras.models.clone_model(
model,
clone_function=apply_quantization_to_conv2D,
)
#annotated_model.save('quantize_ready_model_20_01_Conv2D.h5', include_optimizer=True)
annotated_model.summary()
# Now that the Dense layers are annotated,
# `quantize_apply` actually makes the model quantization aware.
#quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
I commented this line quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
in the above code as it was throwing the error ValueError: Unknown layer: AnchorBoxes
Instead I saved the model after applying quantization to the Conv2D layers as below
def apply_quantization_to_conv2D(layer):
#print(layer)
if isinstance(layer, tf.keras.layers.Conv2D):
return tfmot.quantization.keras.quantize_annotate_layer(layer)
return layer
# Use `tf.keras.models.clone_model` to apply `apply_quantization_to_dense`
# to the layers of the model.
annotated_model = tf.keras.models.clone_model(
model,
clone_function=apply_quantization_to_conv2D,
)
annotated_model.summary()
annotated_model.save('quantize_ready_model_20_01_Conv2D_1.h5', include_optimizer=True)
# Now that the Dense layers are annotated,
# `quantize_apply` actually makes the model quantization aware.
#quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
#quant_aware_model.compile(optimizer=adam, loss=ssd_loss.compute_loss)
#quant_aware_model.summary()
Then I loaded the model hoping that the loaded quantized model as below will have the custom_objects attached to it.
with tfmot.quantization.keras.quantize_scope():
loaded_model = tf.keras.models.load_model('./quantize_ready_model_20_01_Conv2D_1.h5', custom_objects={'AnchorBoxes': AnchorBoxes})
Finally I applied the quantize_apply
to the new loaded_model
which has quantized layers.
quant_aware_model = tfmot.quantization.keras.quantize_apply(loaded_model)
which again resulted in the same error
ValueError: Unknown layer: AnchorBoxes
System information
TensorFlow version (installed from source or binary): TF 2.0.0
TensorFlow Model Optimization version (installed from source or binary): 0.5.0
Describe the expected behavior
When I run quantize_apply(model), the model should become quantization aware
Describe the current behavior
Throwing an error on the custom objects
Code to reproduce the issue
gist
The issue was fixed after passing the custom layer like this AnchorBoxes': AnchorBoxes
in the below code.
with quantize_scope(
{'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,
'AnchorBoxes': AnchorBoxes}):
# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)