I follow the instruction of Fine-tuning BERT to build a model with my own dataset(It is kind of large, and greater than 20G), then take steps to re-cdoe my data and load them from tf_record
files.
The training_dataset
I create has the same signature as that in the instruction
training_dataset.element_spec
({'input_word_ids': TensorSpec(shape=(32, 1024), dtype=tf.int32, name=None),
'input_mask': TensorSpec(shape=(32, 1024), dtype=tf.int32, name=None),
'input_type_ids': TensorSpec(shape=(32, 1024), dtype=tf.int32, name=None)},
TensorSpec(shape=(32,), dtype=tf.int32, name=None))
where batch_size
is 32, max_seq_length
is 1024.
As the instruction suggestes,
The resulting tf.data.Datasets return (features, labels) pairs, as expected by keras.Model.fit
It semms that everything works as expected,(the instruction does not show how to use training_dataset
though ) However, the following code
bert_classifier.fit(
x = training_dataset,
validation_data=test_dataset, # has the same signature just as training_dataset
batch_size=32,
epochs=epochs,
verbose=1,
)
encouters an error that seems weird to me,
Traceback (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"__main__", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/captain/project/dataload/train.py", line 81, in <module>
verbose=1,
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py", line 1100, in fit
tmp_logs = self.train_function(iterator)
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 828, in __call__
result = self._call(*args, **kwds)
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 871, in _call
self._initialize(args, kwds, add_initializers_to=initializers)
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 726, in _initialize
*args, **kwds))
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 2969, in _get_concrete_function_internal_garbage_collected
graph_function, _ = self._maybe_define_function(args, kwargs)
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3361, in _maybe_define_function
graph_function = self._create_graph_function(args, kwargs)
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/eager/function.py", line 3206, in _create_graph_function
capture_by_value=self._capture_by_value),
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 990, in func_graph_from_py_func
func_outputs = python_func(*func_args, **func_kwargs)
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py", line 634, in wrapped_fn
out = weak_wrapped_fn().__wrapped__(*args, **kwds)
File "/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py", line 977, in wrapper
raise e.ag_error_metadata.to_exception(e)
ValueError: in user code:
/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:805 train_function *
return step_function(self, iterator)
/home/captain/.local/lib/python3.7/site-packages/official/nlp/keras_nlp/layers/position_embedding.py:88 call *
return tf.broadcast_to(position_embeddings, input_shape)
/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/ops/gen_array_ops.py:845 broadcast_to **
"BroadcastTo", input=input, shape=shape, name=name)
/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py:750 _apply_op_helper
attrs=attr_protos, op_def=op_def)
/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py:592 _create_op_internal
compute_device)
/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:3536 _create_op_internal
op_def=op_def)
/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:2016 __init__
control_input_ops, op_def)
/home/captain/.local/lib/python3.7/site-packages/tensorflow/python/framework/ops.py:1856 _create_c_op
raise ValueError(str(e))
ValueError: Dimensions must be equal, but are 512 and 1024 for '{{node bert_classifier/bert_encoder_1/position_embedding/BroadcastTo}} =
BroadcastTo[T=DT_FLOAT, Tidx=DT_INT32](bert_classifier/bert_encoder_1/position_embedding/strided_slice_1, bert_classifier/bert_encoder_1/position_embedding/Shape)'
with input shapes: [512,768], [3] and with input tensors computed as partial shapes: input[1] = [32,1024,768].
There is nothing to do with 512, and I didn't use 512 thorough my code. So where is wrong with my code and how to fix that?
They created the bert_classifier
based on bert_config_file
loaded from bert_config.json
bert_classifier, bert_encoder = bert.bert_models.classifier_model(bert_config, num_labels=2)
bert_config.json
{
'attention_probs_dropout_prob': 0.1,
'hidden_act': 'gelu',
'hidden_dropout_prob': 0.1,
'hidden_size': 768,
'initializer_range': 0.02,
'intermediate_size': 3072,
'max_position_embeddings': 512,
'num_attention_heads': 12,
'num_hidden_layers': 12,
'type_vocab_size': 2,
'vocab_size': 30522
}
According to this config, hidden_size
is 768 and max_position_embeddings
is 512 so your input data used to feed to BERT model must be the same shape as described. It explains the reason why you are getting the shape-mismatched issue.
Therefore, to make it work, you have to change all lines for creating tensor inputs from 1024
to 512
.