If you directly use the ranger function, one can obtain the out-of-bag error from the resulting ranger class object.
If instead, one proceeds by way of setting up a recipe, model specification/engine, with tuning parameters, etc., how can we extract that same error? The Tidymodels approach doesn't seem to hold on to that data.
If you want to access the ranger object inside of the parsnip object, it is there as $fit
:
library(tidymodels)
data("ad_data", package = "modeldata")
rf_spec <-
rand_forest() %>%
set_engine("ranger", oob.error = TRUE) %>%
set_mode("classification")
rf_fit <- rf_spec %>%
fit(Class ~ ., data = ad_data)
rf_fit
#> parsnip model object
#>
#> Fit time: 158ms
#> Ranger result
#>
#> Call:
#> ranger::ranger(x = maybe_data_frame(x), y = y, oob.error = ~TRUE, num.threads = 1, verbose = FALSE, seed = sample.int(10^5, 1), probability = TRUE)
#>
#> Type: Probability estimation
#> Number of trees: 500
#> Sample size: 333
#> Number of independent variables: 130
#> Mtry: 11
#> Target node size: 10
#> Variable importance mode: none
#> Splitrule: gini
#> OOB prediction error (Brier s.): 0.1340793
class(rf_fit)
#> [1] "_ranger" "model_fit"
class(rf_fit$fit)
#> [1] "ranger"
rf_fit$fit$prediction.error
#> [1] 0.1340793
Created on 2021-03-11 by the reprex package (v1.0.0)