I am working on a project for building a high precision word alignment between sentences and their translations in other languages, for measuring translation quality. I am aware of Giza++ and other word alignment tools that are used as part of the pipeline for Statistical Machine Translation, but this is not what I'm looking for. I'm looking for an algorithm that can map words from the source sentence into the corresponding words in the target sentence, transparently and accurately given these restrictions:
Here is what I did:
Here is an example of a correlation matrix between an English and a German sentence. We can see the challenges discussed above.
In the image, there is an example of the alignment between an English and German sentence, showing the correlations between words, and the green cells are the correct alignment points that should be identified by the word-alignment algorithm.
Here is some of what I tried:
Here is the code I am using:
import random
src_words=["I","know","this"]
trg_words=["Ich","kenne","das"]
def match_indexes(word1,word2):
return random.random() #adjust this to get the actual correlation value
all_pairs_vals=[] #list for all the source (src) and taget (trg) indexes and the corresponding correlation values
for i in range(len(src_words)): #iterate over src indexes
src_word=src_words[i] #identify the correponding src word
for j in range(len(trg_words)): #iterate over trg indexes
trg_word=trg_words[j] #identify the correponding trg word
val=match_indexes(src_word,trg_word) #get the matching value from the inverted indexes of each word (or from the data provided in the speadsheet)
all_pairs_vals.append((i,j,val)) #add the sentence indexes for scr and trg, and the corresponding val
all_pairs_vals.sort(key=lambda x:-x[-1]) #sort the list in descending order, to get the pairs with the highest correlation first
selected_alignments=[]
used_i,used_j=[],[] #exclude the used rows and column indexes
for i0,j0,val0 in all_pairs_vals:
if i0 in used_i: continue #if the current column index i0 has been used before, exclude current pair-value
if j0 in used_j: continue #same if the current row was used before
selected_alignments.append((i0,j0)) #otherwise, add the current pair to the final alignment point selection
used_i.append(i0) #and include it in the used row and column indexes so that it will not be used again
used_j.append(j0)
for a in all_pairs_vals: #list all pairs and indicate which ones were selected
i0,j0,val0=a
if (i0,j0) in selected_alignments: print(a, "<<<<")
else: print(a)
It's problematic because it doesn't accomodate the many-to-many, or even the one to many alignments, and can err easily in the beginning by selecting a wrong pair with highest correlation, excluding its row and column from future selection. A good algorithm would factor in that a certain pair has the highest correlation in its respective row/column, but would also consider the proximity to other pairs with high correlations.
Here is some data to try if you like, it's in Google sheets: https://docs.google.com/spreadsheets/d/1-eO47RH6SLwtYxnYygow1mvbqwMWVqSoAhW64aZrubo/edit?usp=sharing
I highly recommend testing Awesome-Align. It relies on multilingual BERT (mBERT) and the results look very promising. I even tested it with Arabic, and it did a great job on a difficult alignment example since Arabic is a morphology-rich language, and I believe it would be more challenging than a Latin-based language such as German.
As you can see, one word in Arabic corresponds to multiple words in English, and yet Awesome-Align managed to handle the many-to-many mapping to a great extent. You may give it a try and I believe it will meet your needs.
There is also a Google Colab demo at https://colab.research.google.com/drive/1205ubqebM0OsZa1nRgbGJBtitgHqIVv6?usp=sharing#scrollTo=smW6s5JJflCN
Good luck!