Given a random matrix (any size!), write a function that determines whether or not that matrix is a Toeplitz Matrix. In linear algebra, a Toeplitz matrix is one in which the elements on any given diagonal from top left to bottom right are identical.
Here is an example:
x <- structure(c(1, 5, 4, 7, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 8,
4, 3, 2), .Dim = 4:5)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 8
[2,] 5 1 2 3 4
[3,] 4 5 1 2 3
[4,] 7 4 5 1 2
So our function should receive such matrix and return TRUE if it meets the conditions.
To test the function, one can use stats::toeplitz()
to generate a toeplitz matrix. So for example, the expected output of our function should be:
> toeplitz_detector(stats::toeplitz(sample(5, 5)))
> [1] TRUE
I've solved the problem by defining the following function:
toeplitz_solver <- function(a) {
# re-order a backwards, because we need to check diagonals from top-left
# to bottom right. if we don't reorder, we'll end up with top-right to
# bottom-left.
a <- a[, ncol(a):1]
# get all i and j (coordinates for every element)
i <- 1:nrow(a)
j <- 1:ncol(a)
# get all combinations of i and j
diags <- expand.grid(i, j)
# the coordinates for the diagonals are the ones where
# the sum is the same, e.g.: (3,2), (4,1), (2,3), (1,4)
sums <- apply(diags, 1, sum)
indexes <- lapply(unique(sums), function(x) {
diags[which(sums == x), ]
})
# indexes is now a list where every element is a list of coordinates
# the first element is a list for every coordinates for the first diag
# so on and so forth
results <- sapply(indexes, function(x) {
y <- a[as.matrix(x)]
return(all(y == y[1]))
})
# if every diagonal meets the condition, it is safe to assume that the
# input matrix is in fact toeplitz.
return(all(results))
}