I'm looking into training an object detection network using Tensorflow, and I had a look at the TF2 Model Zoo. I noticed that there are noticeably less models there than in the directory /models/research/models/
, including the MobileDet with SSDLite developed for the jetson xavier.
To clarify, the readme says that there is a MobileDet GPU with SSDLite, and that the model and checkpoints trained on COCO are provided, yet I couldn't find them anywhere in the repo.
How is one supposed to use those models?
I already have a custom-trained MobileDetv3 for image classification, and I was hoping to see a way to turn the network into an object detection network, in accordance with the MobileDetv3 paper. If this is not straightforward, training one network from scratch could be ok too, I just need to know where to even start from.
If you plan to use the object detection API, you can't use your existing model. You have to choose from a list of models here for v2 and here for v1
The documentation is very well maintained and the steps to train or validate or run inference (test) on custom data is very well explained here by the TensorFlow team. The link is meant for TensorFlow version v2. However, if you wish to use v1, the process is fairly similar and there are numerous blogs/videos explaining how to go about it