I have 11 sites (A-K) and every site I calculated the average scores on 6 elements and the average for all elements
PCC V1 V2 V3 V4 V5 V6 V7 Vtotal
1 A 8.67 4.67 6.42 6.92 7.67 6.93 5.72 6.71
2 B 6.58 4.67 5.75 3.12 4.67 4.80 5.25 4.98
3 C 6.50 5.67 7.25 5.75 5.33 6.40 4.00 5.84
4 D 6.25 5.83 6.00 6.12 4.00 5.00 5.33 5.51
5 E 9.00 5.67 6.50 8.00 6.17 3.60 5.00 6.28
6 F 8.92 7.00 6.62 5.75 7.17 5.90 6.67 6.86
7 G 5.67 5.83 6.00 5.75 4.92 5.90 4.58 5.52
8 H 8.92 7.50 9.62 6.50 6.17 7.60 7.33 7.66
9 I 7.83 4.83 7.12 7.62 6.17 5.40 5.75 6.39
10 J 7.50 7.67 7.25 8.38 7.17 6.30 7.00 7.32
11 K 6.83 5.83 5.38 5.12 5.58 6.20 6.17 5.87
I want to draw a radar chart for each site and score ranges from 1-11 I've tried this function:
create_beautiful_radarchart <- function(data, color = "#00AFBB",
vlabels = colnames(data), vlcex = 0.7,
caxislabels = NULL, title = NULL, ...){
radarchart(
data, axistype = 1,
# Customize the polygon
pcol = color, pfcol = scales::alpha(color, 0.5), plwd = 2, plty = 1,
# Customize the grid
cglcol = "grey", cglty = 1, cglwd = 0.8,
# Customize the axis
axislabcol = "grey",
# Variable labels
vlcex = vlcex, vlabels = vlabels,
caxislabels = caxislabels, title = title, ...
)
}
Then I created a specific data frame for each site:
PCCA = df[1,2:9]
PCCB = df[2,2:9] ...
Then I tried this:
create_beautiful_radarchart( data = PCCA, caxislabels = c(0,1,2,3,4,5,6,7,8,9,10,11))
But I did not get the chart as needed (attached photo)spider chart
Provided I understood you correctly, I'd start with something like this:
library(tidyverse)
# Thanks to: https://stackoverflow.com/questions/42562128/ggplot2-connecting-points-in-polar-coordinates-with-a-straight-line-2
coord_radar <- function (theta = "x", start = 0, direction = 1) {
theta <- match.arg(theta, c("x", "y"))
r <- if (theta == "x") "y" else "x"
ggproto("CordRadar", CoordPolar, theta = theta, r = r, start = start,
direction = sign(direction),
is_linear = function(coord) TRUE)
}
df %>%
pivot_longer(-PCC) %>%
ggplot(aes(x = name, y = value, colour = PCC, group = PCC)) +
geom_line() +
coord_radar() +
theme_minimal()
To generate separate plots per PCC
I'd use facets
df %>%
pivot_longer(-PCC) %>%
ggplot(aes(x = name, y = value, group = PCC)) +
geom_line() +
coord_radar() +
facet_wrap(~ PCC) +
theme_minimal()
df <- read.table(text = " PCC V1 V2 V3 V4 V5 V6 V7 Vtotal
1 A 8.67 4.67 6.42 6.92 7.67 6.93 5.72 6.71
2 B 6.58 4.67 5.75 3.12 4.67 4.80 5.25 4.98
3 C 6.50 5.67 7.25 5.75 5.33 6.40 4.00 5.84
4 D 6.25 5.83 6.00 6.12 4.00 5.00 5.33 5.51
5 E 9.00 5.67 6.50 8.00 6.17 3.60 5.00 6.28
6 F 8.92 7.00 6.62 5.75 7.17 5.90 6.67 6.86
7 G 5.67 5.83 6.00 5.75 4.92 5.90 4.58 5.52
8 H 8.92 7.50 9.62 6.50 6.17 7.60 7.33 7.66
9 I 7.83 4.83 7.12 7.62 6.17 5.40 5.75 6.39
10 J 7.50 7.67 7.25 8.38 7.17 6.30 7.00 7.32
11 K 6.83 5.83 5.38 5.12 5.58 6.20 6.17 5.87", header = T)