I'd like to know the actual learning rate during training, here is my code.
learning_rate = 0.001
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[1, 2], gamma=0.1)
def train(epoch):
train_loss = 0
for batch_idx, (input, target) in enumerate(train_loader):
predict_label = net(input)
loss = criterion(predict_label, target)
train_loss += loss.item()
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(optimizer.param_groups[0]['lr'])
scheduler.step()
print(scheduler.state_dict()['_last_lr'])
print(optimizer.param_groups[0]['lr'])
the output is 0.001, 0.0001, 0.0001. So what is the actual lr during optimizer.step()? 0.001 or 0.0001? Thanks.
The important part is here:
for batch_idx, (input, target) in enumerate(train_loader):
...
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(optimizer.param_groups[0]['lr']) #### CURRENT LEARNING RATE
scheduler.step() #step through learning rate
print(scheduler.state_dict()['_last_lr']) #### NEW LEARNING RATE
print(optimizer.param_groups[0]['lr']) #### NEW LEARNING RATE
Because you step your scheduler after your epoch, then the first epoch will have your initial value which is set to 0.001
. If you run for multiple epochs then it will continue to be annealed.