I have a dataframe that I'd like to plot a tree map with squarify
. I'd like to show the country_name
and counts
on the chart by editing the labels
parameter but it seems only taking one value.
Example data
import squarify
import pandas as pd
from matplotlib import pyplot as plt
d = {'country_name':['USA', 'UK', 'Germany'], 'counts':[100, 200, 300]}
dd = pd.DataFrame(data=d)
fig = plt.gcf()
ax = fig.add_subplot()
fig.set_size_inches(16, 4.5)
norm = matplotlib.colors.Normalize(vmin=min(dd.counts), vmax=max(dd.counts))
colors = [matplotlib.cm.Blues(norm(value)) for value in dd.counts]
squarify.plot(label=dd.country_name, sizes=dd.counts, alpha=.7, color=colors)
plt.axis('off')
plt.show()
Expected output will have both counts
and country_name
on the chart.
You can create a list of labels by looping simultaneously through both columns and composing combined strings. For example:
import squarify
import pandas as pd
from matplotlib import pyplot as plt
import matplotlib
d = {'country_name': ['USA', 'UK', 'Germany'], 'counts': [100, 200, 300]}
dd = pd.DataFrame(data=d)
labels = [f'{country}\n{count}' for country, count in zip(dd.country_name, dd.counts)]
fig = plt.gcf()
ax = fig.add_subplot()
fig.set_size_inches(16, 4.5)
norm = matplotlib.colors.Normalize(vmin=min(dd.counts), vmax=max(dd.counts))
colors = [matplotlib.cm.Blues(norm(value)) for value in dd.counts]
squarify.plot(label=labels, sizes=dd.counts, alpha=.7, color=colors)
plt.axis('off')
plt.show()