rtextnlptext-miningterm-document-matrix

R: Converting Tibbles to a Term Document Matrix


I am using the R programming language. I learned how to take pdf files from the internet and load them into R. For example, below I load 3 different books by Shakespeare into R:

library(pdftools)
library(tidytext)
library(textrank)
library(tm)

#1st document
url <- "https://shakespeare.folger.edu/downloads/pdf/hamlet_PDF_FolgerShakespeare.pdf"

article <- pdf_text(url)
article_sentences <- tibble(text = article) %>%
  unnest_tokens(sentence, text, token = "sentences") %>%
  mutate(sentence_id = row_number()) %>%
  select(sentence_id, sentence)


article_words <- article_sentences %>%
  unnest_tokens(word, sentence)


article_words_1 <- article_words %>%
  anti_join(stop_words, by = "word")

#2nd document
url <- "https://shakespeare.folger.edu/downloads/pdf/macbeth_PDF_FolgerShakespeare.pdf"

article <- pdf_text(url)
article_sentences <- tibble(text = article) %>%
  unnest_tokens(sentence, text, token = "sentences") %>%
  mutate(sentence_id = row_number()) %>%
  select(sentence_id, sentence)


article_words <- article_sentences %>%
  unnest_tokens(word, sentence)


article_words_2<- article_words %>%
  anti_join(stop_words, by = "word")


#3rd document
url <- "https://shakespeare.folger.edu/downloads/pdf/othello_PDF_FolgerShakespeare.pdf"

article <- pdf_text(url)
article_sentences <- tibble(text = article) %>%
  unnest_tokens(sentence, text, token = "sentences") %>%
  mutate(sentence_id = row_number()) %>%
  select(sentence_id, sentence)


article_words <- article_sentences %>%
  unnest_tokens(word, sentence)


article_words_3 <- article_words %>%
  anti_join(stop_words, by = "word")

Each one of these files (e.g. article_words_1) is now a "tibble" file. From here, I want to convert these into a "document term matrix" so that I can perform text mining and NLP on these :

#convert to document term matrix
myCorpus <- Corpus(VectorSource(article_words_1, article_words_2, article_words_3))
tdm <- TermDocumentMatrix(myCorpus)
inspect(tdm)

But this seems to result in an error:

Error in VectorSource(article_words_1, article_words_2, article_words_3) : 
  unused arguments (article_words_2, article_words_3)

Can someone please show me what I am doing wrong?

Thanks


Solution

  • As the error message suggests, VectorSource only takes 1 argument. You can rbind the datasets together and pass it to VectorSource function.

    library(tm)
    
    tdm <- TermDocumentMatrix(Corpus(VectorSource(rbind(article_words_1, article_words_2, article_words_3))))
    inspect(tdm)
    
    #<<TermDocumentMatrix (terms: 14952, documents: 2)>>
    #Non-/sparse entries: 14952/14952
    #Sparsity           : 50%
    #Maximal term length: 25
    #Weighting          : term frequency (tf)
    #Sample             :
    #            Docs
    #Terms        1     2
    #  "act",     0   397
    #  "cassio",  0   258
    #  "ftln",    0 10303
    #  "hamlet",  0   617
    #  "iago",    0   371
    #  "lord",    0   355
    #  "macbeth", 0   386
    #  "othello", 0   462
    #  "sc",      0   337
    #  "thou",    0   346