I have a pre-trained keras
model which I have hosted on AWS
using AWS SageMaker
. I've got an endpoint
and I can make successful predictions
using the Amazon SageMaker Notebook instance
.
What I do there is that I serve a .PNG image
like the following and the model gives me correct prediction.
file= s3.Bucket(bucketname).download_file(filename_1, 'normal.png')
file_name_1='normal.png'
import sagemaker
from sagemaker.tensorflow.model import TensorFlowModel
endpoint = 'tensorflow-inference-0000-11-22-33-44-55-666' #endpoint
predictor=sagemaker.tensorflow.model.TensorFlowPredictor(endpoint, sagemaker_session)
data = np.array([resize(imread(file_name), (137, 310, 3))])
predictor.predict(data)
Now I wanted to make predictions using a mobile application
. For that I wrote a Lambda function
in python and attached an API gateway
to it. My Lambda function
is the following.
import os
import sys
CWD = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, os.path.join(CWD, "lib"))
import json
import base64
import boto3
import numpy as np
from scipy import signal
from scipy.signal import butter, lfilter
from scipy.io import wavfile
import scipy.signal as sps
import io
from io import BytesIO
import matplotlib.pylab as plt
from matplotlib import pyplot as plt
import matplotlib.image as mpimg
from datetime import datetime
from skimage.io import imread
from skimage.transform import resize
from PIL import Image
ENDPOINT_NAME = 'tensorflow-inference-0000-11-22-33-44-55-666'
runtime= boto3.client('runtime.sagemaker')
def lambda_handler(event, context):
s3 = boto3.client("s3")
# retrieving data from event.
get_file_content_from_postman = event["content"]
# decoding data.
decoded_file_name = base64.b64decode(get_file_content_from_postman)
image = Image.open(io.BytesIO(decoded_file_name))
data = np.array([resize(imread(image), (137, 310, 3))])
response = runtime.invoke_endpoint(EndpointName=ENDPOINT_NAME, ContentType='text/csv', Body=data)
result = json.loads(response['Body'].read().decode())
return result
The third last line is giving me error 'PngImageFile' object has no attribute 'read'
.
Any idea what I am missing here?
I was missing one thing which was causing this error. After receiving the image data I used python list and then json.dump
that list (of lists). Below is the code for reference.
import os
import sys
CWD = os.path.dirname(os.path.realpath(__file__))
sys.path.insert(0, os.path.join(CWD, "lib"))
import json
import base64
import boto3
import numpy as np
import io
from io import BytesIO
from skimage.io import imread
from skimage.transform import resize
# grab environment variable of Lambda Function
ENDPOINT_NAME = os.environ['ENDPOINT_NAME']
runtime= boto3.client('runtime.sagemaker')
def lambda_handler(event, context):
s3 = boto3.client("s3")
# retrieving data from event.
get_file_content_from_postman = event["content"]
# decoding data.
decoded_file_name = base64.b64decode(get_file_content_from_postman)
data = np.array([resize(imread(io.BytesIO(decoded_file_name)), (137, 310, 3))])
payload = json.dumps(data.tolist())
response = runtime.invoke_endpoint(EndpointName=ENDPOINT_NAME, ContentType='application/json', Body=payload)
result = json.loads(response['Body'].read().decode())
return result