python-3.xnumpyscipy-spatiallaplacian

Discrete Laplacian on a non-regular mesh (python)


I have coded the laplacien function for a non-regular mesh (created with the scipy.spatial.Delaunay function). I have not errors but the results are not correct : the eigenvectors are correct but the eigenvalues ​​are too high (in absolute value).

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import scipy.spatial

def rect_drum(L,H,U):
    vals = []
    val = 0
    k = 1
    l = 1
    while val >= -U:
        while val >= -U:
            val = -np.pi**2*((k/L)**2+(l/H)**2)
            if val >= -U:
                vals.append(val)
            l += 1
        l = 1
        k += 1
        val = -np.pi**2*((k/L)**2+(l/H)**2)
    return np.array(vals)


def count_vp(tab,U):
    #count the n eigenvalues ​​greater than equal to -U in the array tab
    return tab[tab>=-U]

def in_curve(f,fargs,shape,a):
    points = [] # the points inside the curve
    for j in range(shape[0]):
        for i in range(shape[1]):
            if f(i*a,j*a,*fargs) < 0:
                points.append([i*a,j*a])

    return np.array(points)

def triang(points,a,f,fargs,bord):
    tri_points = points.copy()
    tri_points[:,1] *= np.sqrt(3)
    tri_points2 = np.vstack((points,bord))
    tri_points2[:,1] *= np.sqrt(3)
    tri_points2[:,0] += a/2
    tri_points2[:,1] += np.sqrt(3)/2*a
    fin = np.vstack((tri_points,tri_points2))
    i = 0
    eps = 0.01
    while i < len(fin):
        if f(fin[i,0]+eps,fin[i,1]+eps,*fargs) > 0:
            fin = np.delete(fin,i,0)
            i -= 1
        i += 1
    return np.vstack((fin,bord)),len(fin),len(bord)


def tri_ang(points,ind,p0):
    # sort the points in trigonometric order
    vec=np.arctan2((points-p0)[:,1],(points-p0)[:,0])
    values = []
    dtype = [('val',float),('n',int)]
    
    for i in range(len(vec)):
        values.append((vec[i],i))
    values = np.sort(np.array(values,dtype),order='val') 
    new_points = []
    new_ind = []
    for tup in values:
        new_points.append(points[tup[1]])
        new_ind.append(ind[tup[1]])
    return np.array(new_points),np.array(new_ind)




def M(points,tri,Nint):
    
    indptr,ind = tri.vertex_neighbor_vertices
    W = np.zeros((Nint,Nint)) # cotangents matrix
    A = np.zeros((Nint,1)) # surfaces vertex array for each point i (A[i])
    
    for i in range(Nint):
        tot = 0
        nhb_ind = ind[indptr[i]:indptr[i+1]] # indices of the points close to the point of index k
        nhb = points[nhb_ind] # their coordinates
        nhb,nhb_ind = tri_ang(nhb,nhb_ind,points[i]) #the coordinates (nhb) and  (nhb_ind) of each neighbor of i
        
        for j in range(len(nhb_ind)):
            vec = nhb[j]-points[i] # a vector connecting the point to his neighbor of index 0
            vec_av = nhb[j-1]-points[i] # another vector but with the Vosin from before
            if j+1 >= len(nhb_ind):
                k = 0
            else:
                k = j+1
            vec_ap = nhb[k]-points[i] # another vector but with the next neighbor
            
            # another vector but with the next neighbor
            A[i] += 0.5/3*np.linalg.norm(np.cross(vec,vec_av))
            
            if nhb_ind[j] < Nint:
                # we use the vector and scalar product to calculate the cotangents: A.B/||AxB||
                cotan_alpha = np.dot(vec_av,vec_av-vec)/np.linalg.norm(np.cross(vec_av,vec_av-vec))
                cotan_beta = np.dot(vec_ap,vec_ap-vec)/np.linalg.norm(np.cross(vec_ap,vec_ap-vec))
                # Wij value :
                W[i,nhb_ind[j]] = -0.5*(cotan_alpha+cotan_beta)
                
                tot += cotan_alpha+cotan_beta
    
        W[i,i] = -0.5*tot # diagonal values
    
    return (1/A)*W


def rect(x,y,L,H,x0=0,y0=0):
    if 0<x-x0<L and 0<y-y0<H:
        return -1
    else:
        return 1

def rect_rim(L,H,a,x0=0,y0=0):
    tab1 = np.arange(x0,L+x0,a)[:,np.newaxis]
    h = np.hstack((tab1,H*np.ones((len(tab1),1))+y0))
    b = np.hstack((tab1,np.zeros((len(tab1),1))+y0))
    tab2 = np.arange(y0+a,H+y0,a)[:,np.newaxis]
    g = np.hstack((np.zeros((len(tab2),1))+x0,tab2))
    d = np.hstack((L*np.ones((len(tab2),1))+x0,tab2))
    hp = np.array([[L+x0,H+y0]])
    bp = np.array([[L+x0,0]])
    return np.vstack((h,b,g,d,hp,bp))
    



# sample with a square 1*1

L = 1
H = 1

dl = 0.05
sol = in_curve(rect,[L,H],(100,100),dl)
sol_tri,Nint,Nbord = triang(sol,dl,rect,[L,H],rect_rim(L,H,dl))

# plt.plot(sol_tri[:,0],sol_tri[:,1],linestyle="",marker="+",label="tri")
# plt.plot(sol[:,0],sol[:,1],linestyle="",marker="x")
# plt.legend()
# plt.show()

# triangulation
tri = scipy.spatial.Delaunay(sol_tri)
# plt.triplot(sol_tri[:,0],sol_tri[:,1],tri.simplices)
# plt.show()

M = M(sol_tri,tri,Nint)

valp,vecp = np.linalg.eig(M) # eigenvalues and eigenvectors
vecp = np.real(vecp)

# comparison with the exact solution:
T = 1000
U = np.arange(0,T,1)
NUsim = np.array([len(count_vp(valp,u)) for u in U])
NU = np.array([len(rect_drum(L,H,u)) for u in U])
plt.plot(U,NUsim,label='simulation')
plt.plot(U,NU,label='exacts')
plt.legend()
plt.show()


# 3D plot of an eigenvector
vecp_tot = np.vstack((vecp,np.zeros((Nbord,Nint))))
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_trisurf(sol_tri[:,0],sol_tri[:,1],vecp_tot[:,0],triangles=tri.simplices)
plt.show()

The laplacian is the function named "M".

The "in_curve function" return the points inside a curve defined by f(x,y,*fargs) < 0 (a square in the sample).

The "triang" function return points with added points (triangle meshs). The fonction uses an another function for the rim of the curve (for most precision), in the sample it is the "rect_rim" function.

I used the formula given at https://en.wikipedia.org/wiki/Discrete_Laplace_operator ("mesh laplacians").


Solution

  • I have solve my problem : it's a sign and a rim problems.

    import numpy as np
    import matplotlib.pyplot as plt
    from mpl_toolkits.mplot3d import Axes3D
    import scipy.spatial
    
    def rect_drum(L,H,U):
        vals = []
        val = 0
        k = 1
        l = 1
        while val >= -U:
            while val >= -U:
                val = -np.pi**2*((k/L)**2+(l/H)**2)
                if val >= -U:
                    vals.append(val)
                l += 1
            l = 1
            k += 1
            val = -np.pi**2*((k/L)**2+(l/H)**2)
        return np.array(vals)
    
    
    def count_vp(tab,U):
        #count the n eigenvalues ​​greater than equal to -U in the array tab
        return tab[tab>=-U]
    
    def in_curve(f,fargs,shape,a):
        points = [] # the points inside the curve
        for j in range(shape[0]):
            for i in range(shape[1]):
                if f(i*a,j*a,*fargs) < 0:
                    points.append([i*a,j*a])
    
        return np.array(points)
    
    def triang(points,a,f,fargs,bord):
        tri_points = points.copy()
        tri_points[:,1] *= np.sqrt(3)
        tri_points2 = np.vstack((points,bord))
        tri_points2[:,1] *= np.sqrt(3)
        tri_points2[:,0] += a/2
        tri_points2[:,1] += np.sqrt(3)/2*a
        fin = np.vstack((tri_points,tri_points2))
        i = 0
        eps = 0.01
        while i < len(fin):
            if f(fin[i,0]+eps,fin[i,1]+eps,*fargs) > 0:
                fin = np.delete(fin,i,0)
                i -= 1
            i += 1
        return np.vstack((fin,bord)),len(fin),len(bord)
    
    
    def tri_ang(points,ind,p0):
        # sort the points in trigonometric order
        vec=np.arctan2((points-p0)[:,1],(points-p0)[:,0])
        values = []
        dtype = [('val',float),('n',int)]
        
        for i in range(len(vec)):
            values.append((vec[i],i))
        values = np.sort(np.array(values,dtype),order='val') 
        new_points = []
        new_ind = []
        for tup in values:
            new_points.append(points[tup[1]])
            new_ind.append(ind[tup[1]])
        return np.array(new_points),np.array(new_ind)
    
    
    def Laplacian(points,tri,Nint):
        
        indptr,ind = tri.vertex_neighbor_vertices
        W = np.zeros((Nint,Nint)) # cotangents matrix
        A = np.zeros((Nint,1)) # surfacesvertex aray of point i (A[i])
        
        for i in range(Nint):
            tot = 0
            nhb_ind = ind[indptr[i]:indptr[i+1]] # indices of the points close to the point of index k
            nhb = points[nhb_ind] # their coordinates
            nhb,nhb_ind = tri_ang(nhb,nhb_ind,points[i]) #the coordinates (nhb) and  (nhb_ind) of each neighbor of i
            
            for j in range(len(nhb_ind)):
                vec = nhb[j]-points[i] # a vector connecting the point to his neighbor of index 0
                vec_av = nhb[j-1]-points[i] # another vector but with the Vosin from before
                if j+1 >= len(nhb_ind):
                    k = 0
                else:
                    k = j+1
                vec_ap = nhb[k]-points[i] # another vector but with the next neighbor
                
                # we use the cross product to calculate the areas of the triangles: ||AxB||/2:
                A[i] += 0.5/3*np.linalg.norm(np.cross(vec,vec_av))
                
                # we use the cross product and scalar product to calculate the cotangents: A.B/||AxB||
                cotan_alpha = np.dot(vec_av,vec_av-vec)/np.linalg.norm(np.cross(vec_av,vec_av-vec))
                cotan_beta = np.dot(vec_ap,vec_ap-vec)/np.linalg.norm(np.cross(vec_ap,vec_ap-vec))
                
                tot += cotan_alpha+cotan_beta
                
                if nhb_ind[j] < Nint:
                    W[i,nhb_ind[j]] = 0.5*(cotan_alpha+cotan_beta)
            
            W[i,i] = -0.5*tot # diagonal values
        
        return (1/A)*W
    
    
    def rect(x,y,L,H,x0=0,y0=0):
        if 0<x-x0<L and 0<y-y0<H:
            return -1
        else:
            return 1
    
    def rect_rim(L,H,a,x0=0,y0=0):
        tab1 = np.arange(x0,L+x0,a)[:,np.newaxis]
        h = np.hstack((tab1,H*np.ones((len(tab1),1))+y0))
        b = np.hstack((tab1,np.zeros((len(tab1),1))+y0))
        tab2 = np.arange(y0+a,H+y0,a)[:,np.newaxis]
        g = np.hstack((np.zeros((len(tab2),1))+x0,tab2))
        d = np.hstack((L*np.ones((len(tab2),1))+x0,tab2))
        hp = np.array([[L+x0,H+y0]])
        bp = np.array([[L+x0,0]])
        return np.vstack((h,b,g,d,hp,bp))
        
    
    
    
    # sample with a square 1*1
    
    L = 1
    H = 1
    
    dl = 0.04
    sol = in_curve(rect,[L,H],(100,100),dl)
    sol_tri,Nint,Nbord = triang(sol,dl,rect,[L,H],rect_rim(L,H,dl))
    
    # triangulation
    tri = scipy.spatial.Delaunay(sol_tri)
    
    M = Laplacian(sol_tri,tri,Nint)
    
    valp,vecp = np.linalg.eig(M) # eigenvalues and eigenvectors
    vecp = np.real(vecp)
    
    # comparison with the exact solution:
    T = 1000
    U = np.arange(0,T,1)
    NUsim = np.array([len(count_vp(valp,u)) for u in U])
    NU = np.array([len(rect_drum(L,H,u)) for u in U])
    plt.plot(U,NUsim,label='simulation')
    plt.plot(U,NU,label='exacts')
    plt.legend()
    plt.show()
    
    
    # 3D plot of an eigenvector
    mode = 0 # change this for an another mode
    vecp_tot = np.vstack((vecp,np.zeros((Nbord,Nint))))
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    ax.plot_trisurf(sol_tri[:,0],sol_tri[:,1],vecp_tot[:,mode],triangles=tri.simplices)
    plt.show()
    

    Notes :

    1- The hight eigenvalues are false : it's an effect of discretisation.

    2- If dl is too small, we have false eigenvectors and eigenvalues (at the top of valp and firsts vectors of vecp), it's probably due to the quality of the meshing.