Background of the Problem
I was trying to use a KerasRegressor
model with the ML models (e.g. Lasso, Gradient Boost Regressor) for the purpose of building an ensemble method. I used the VotingRegressor()
function of sklearn to group the models. However, when I add the KerasRegressor
model in VotingRegressor()
, I get the following error.
ValueError: The estimator KerasRegressor should be a regressor.
How Did I Try to Solve the Problem?
I searched on google by the error and I found only this page where I do not find the solution. Moreover, I tried to understand the document of the KerasRegressor
. However, I do not know why I get the error as the document says that it is the implementation of the scikit-learn regressor API for Keras.
Then, My Question
Why did I get the error and what can I do to solve it?
Any help will be greatly appreciated :). Thanks!
From this issue there is no solution using keras as sklearn wrapper is not maintained and will be removed
Fortunately scikeras package solve this issue.
I advice you to read docs or tutorials but here a simple example using subclassing:
!pip install scikeras
import scikeras
from tensorflow import keras
from sklearn.datasets import make_regression
from sklearn.ensemble import VotingRegressor
from sklearn.linear_model import LinearRegression
class MLPRegressor(KerasRegressor):
def __init__(
self,
hidden_layer_sizes=(100, ),
optimizer="adam",
optimizer__learning_rate=0.001,
epochs=10,
verbose=0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_layer_sizes = hidden_layer_sizes
self.optimizer = optimizer
self.epochs = epochs
self.verbose = verbose
def _keras_build_fn(self, compile_kwargs):
model = keras.Sequential()
inp = keras.layers.Input(shape=(self.n_features_in_))
model.add(inp)
for hidden_layer_size in self.hidden_layer_sizes:
layer = keras.layers.Dense(hidden_layer_size, activation="relu")
model.add(layer)
out = keras.layers.Dense(1)
model.add(out)
model.compile(loss="mse", optimizer=compile_kwargs["optimizer"])
return model
# simple linear regression
r1 = LinearRegression()
# keras model wrapper
r2= MLPRegressor(epochs=20)
X = (y/2).reshape(-1, 1)
y = np.arange(100)
#defining votting classifier
vr = VotingRegressor([('lr', r1), ('MLPReg', r2)])
vr.fit(X,y)
VotingRegressor(estimators=[('lr', LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)), ('MLPReg', MLPRegressor(batch_size=None, build_fn=None, callbacks=None, epochs=20, hidden_layer_sizes=(100,), loss=None, metrics=None, model=None, optimizer='adam', random_state=None, run_eagerly=False, shuffle=True, validation_batch_size=None, validation_split=0.0, verbose=0, warm_start=False))], n_jobs=None, weights=None)