I need to transform a (sort of) wide-format dataset into a long-format one.
The dataset reports the years of begin and end of officials' mandates at different levels.
I would like to dummy out the official being in office for each year for each level (See: expected db).
Notes:
start_lv1_1
and stop_lv1_1
, respectively.
The second time in the columns start_lv1_2
and stop_lv1_2
,
respectively;Thanks very much in advance.
toy <- data.frame(
id = c("A","B","C"),
start_lv1_1 = c(2000,2000,2005),
stop_lv1_1 = c(2005,2005,2010),
start_lv1_2 = c(NA,2010,2015),
stop_lv1_2 = c(NA,2015,2020),
start_lv2_1 = c(NA,NA,2008),
stop_lv2_1 = c(NA,NA,2018))
> toy
id start_lv1_1 stop_lv1_1 start_lv1_2 stop_lv1_2 start_lv2_1 stop_lv2_1
1 A 2000 2005 NA NA NA NA
2 B 2000 2005 2010 2015 NA NA
3 C 2005 2010 2015 2020 2008 2018
Expected result
expected <- data.frame(
id = c(rep("A",21),rep("B",21),rep("C",21)),
year = rep(2000:2020,3),
lv1 = c(1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,
0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,1,1,1,1,1,0),
lv2 = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0))
id year lv1 lv2
1 A 2000 1 0
2 A 2001 1 0
3 A 2002 1 0
4 A 2003 1 0
5 A 2004 1 0
6 A 2005 0 0
7 A 2006 0 0
8 A 2007 0 0
9 A 2008 0 0
10 A 2009 0 0
11 A 2010 0 0
12 A 2011 0 0
13 A 2012 0 0
14 A 2013 0 0
15 A 2014 0 0
16 A 2015 0 0
17 A 2016 0 0
18 A 2017 0 0
19 A 2018 0 0
20 A 2019 0 0
21 A 2020 0 0
22 B 2000 1 0
23 B 2001 1 0
24 B 2002 1 0
25 B 2003 1 0
26 B 2004 1 0
27 B 2005 0 0
28 B 2006 0 0
29 B 2007 0 0
30 B 2008 0 0
31 B 2009 0 0
32 B 2010 1 0
33 B 2011 1 0
34 B 2012 1 0
35 B 2013 1 0
36 B 2014 1 0
37 B 2015 0 0
38 B 2016 0 0
39 B 2017 0 0
40 B 2018 0 0
41 B 2019 0 0
42 B 2020 0 0
43 C 2000 0 0
44 C 2001 0 0
45 C 2002 0 0
46 C 2003 0 0
47 C 2004 0 0
48 C 2005 1 0
49 C 2006 1 0
50 C 2007 1 0
51 C 2008 1 1
52 C 2009 1 1
53 C 2010 0 1
54 C 2011 0 1
55 C 2012 0 1
56 C 2013 0 1
57 C 2014 0 1
58 C 2015 1 1
59 C 2016 1 1
60 C 2017 1 1
61 C 2018 1 0
62 C 2019 1 0
63 C 2020 0 0
tidyverse
way :
library(tidyverse)
toy %>%
pivot_longer(cols = -id,
names_to = c('.value', 'col'),
names_pattern = '(\\w+)_(lv\\d+)',
values_drop_na = TRUE) %>%
mutate(year = map2(start, stop - 1, seq)) %>%
unnest(year) %>%
dplyr::select(-start, -stop) %>%
pivot_wider(names_from = col, values_from = col,
values_fn = length, values_fill = 0) %>%
complete(id, year = seq(min(year), max(year) + 1),
fill = list(lv1 = 0, lv2 = 0))
# id year lv1 lv2
# <chr> <int> <dbl> <dbl>
# 1 A 2000 1 0
# 2 A 2001 1 0
# 3 A 2002 1 0
# 4 A 2003 1 0
# 5 A 2004 1 0
# 6 A 2005 0 0
# 7 A 2006 0 0
# 8 A 2007 0 0
# 9 A 2008 0 0
#10 A 2009 0 0
# … with 53 more rows
Create start
and stop
as different columns getting the data in long format. Create sequence of years between start
and stop - 1
, get the data in wide format and complete
the sequence.