I am new to Common Lisp and I am using SBCL, Slime and Emacs to learn.
While reading the book Common Lisp: A Gentle Introduction to Symbolic Computation, the author mentions the STEP tool which is helpful for debugging and able to do this:
It is not 100% clear if the italic text is coming from the author or the tool itself. Probably, just the author's comments.
However, even if I do not consider the italic, I am unable to generate descriptive info like this.
If I use just SBCL's REPL, I get:
* (step (if (oddp 5) 'yes 'no))
YES
If I use the REPL inside Emacs with Slime on, I get:
CL-USER> (step (if (oddp 5) 'yes 'no))
YES
The author says that:
Each implementation of Common Lisp provides its own version of this tool; only the name has been standardized.
If I try the same thing in Emacs/Slime with a function, I get more info:
(defun my-abs (x)
(cond ((> x 0) x)
((< x 0) (- x))
(t 0)))
Using the definition above and the command bellow on the REPL:
CL-USER> (step (my-abs 10))
I get:
Evaluating call:
(MY-ABS 10)
With arguments:
10
[Condition of type STEP-FORM-CONDITION]
Restarts:
0: [STEP-CONTINUE] Resume normal execution
1: [STEP-OUT] Resume stepping after returning from this function
2: [STEP-NEXT] Step over call
3: [STEP-INTO] Step into call
4: [RETRY] Retry SLIME REPL evaluation request.
5: [*ABORT] Return to SLIME's top level.
--more--
Backtrace:
0: ((LAMBDA ()))
1: (SB-INT:SIMPLE-EVAL-IN-LEXENV (LET ((SB-IMPL::*STEP-OUT* :MAYBE)) (UNWIND-PROTECT (SB-IMPL::WITH-STEPPING-ENABLED #))) #S(SB-KERNEL:LEXENV :FUNS NIL :VARS NIL :BLOCKS NIL :TAGS NIL :TYPE-RESTRICTIONS ..
2: (SB-INT:SIMPLE-EVAL-IN-LEXENV (STEP (MY-ABS 10)) #<NULL-LEXENV>)
3: (EVAL (STEP (MY-ABS 10)))
--more--
Unfortunately, none of those options seem to give me what I want (which could be an error of interpretation on my side).
I would like to see something like:
SLIME seems to be a thorough tool. I might be missing something.
Is there a way to generate the same output described by the book using SLIME or SBCL?
It looks like the author is using LispWorks' stepper.
Here's my step session, using :s
to step the current form and all its subforms.
CL-USER 5 > (step (my-abs -5))
(MY-ABS -5) -> :s
-5 -> :s
-5
(COND ((> X 0) X) ((< X 0) (- X)) (T 0)) <=> (IF (> X 0) (PROGN X) (IF (< X 0) (- X) (PROGN 0)))
(IF (> X 0) (PROGN X) (IF (< X 0) (- X) (PROGN 0))) -> :s
(> X 0) -> :s
X -> :s
-5
0 -> :s
0
NIL
(IF (< X 0) (- X) (PROGN 0)) -> :s
(< X 0) -> :s
X -> :s
-5
0 -> :s
0
T
(- X) -> :s
X -> :s
-5
5
5
5
5
5
Help is on :?
:
:?
:s Step this form and all of its subforms (optional +ve integer arg)
:st Step this form without stepping its subforms
:si Step this form without stepping its arguments if it is a function call
:su Step up out of this form without stepping its subforms
:sr Return a value to use for this form
:sq Quit from the current stepper level
:bug-form <subject> &key <filename>
Print out a bug report form, optionally to a file.
:get <variable> <command identifier>
Get a previous command (found by its number or a symbol/subform within it) and put it in a variable.
:help Produce this list.
:his &optional <n1> <n2>
List the command history, optionally the last n1 or range n1 to n2.
:redo &optional <command identifier>
Redo a previous command, found by its number or a symbol/subform within it.
:use <new> <old> &optional <command identifier>
Do variant of a previous command, replacing old symbol/subform with new symbol/subform.
For compiled code it also has a visual stepper, where you can press a red button to set a breakpoints, see the intermediate variables changing etc. It looks like this:
LispWorks is a proprietary implementation and IDE that has a free but limited version. I just wrote a review that should be merged on the Cookbook.
Do you know trace
? printv, an external library, is a trace on steroids. They resemble the output you appreciate.
(defun factorial (n)
(if (plusp n)
(* n (factorial (1- n)))
1))
(trace factorial)
(factorial 2)
0: (FACTORIAL 3)
1: (FACTORIAL 2)
2: (FACTORIAL 1)
3: (FACTORIAL 0)
3: FACTORIAL returned 1
2: FACTORIAL returned 1
1: FACTORIAL returned 2
0: FACTORIAL returned 6
6
(untrace factorial)
printv
prints the code and the returned values.
(printv:printv
(+ 2 3)
*print-case*
*package*
'symbol
(let* ((x 0) (y (1+ x)) (z (1+ y)))
(values x y z)))
;;; (+ 2 3) => 5
;;; *PRINT-CASE* => :UPCASE
;;; *PACKAGE* => #<PACKAGE "ISSR-TEST">
;;; 'SYMBOL => SYMBOL
;;; (LET* ((X 0) (Y (1+ X)) (Z (1+ Y)))
(VALUES X Y Z)) =>
[ [X=0] [Y=1] [Z=2] ]
;;; => 0, 1, 2