I have two datasets that I am trying to merge. They are not complete datasets, so this means that individuals are missing records.
Here is data1
(example is a subset of my real data):
squirrel_id age ageclass trialdate year OFT1 MIS1
10342 1 Y 2008-05-19 2008 0.605 -4.19
10342 2 A 2009-05-31 2009 -1.85 1.14
10342 3 A 2010-05-22 2010 -2.39 2.38
Here is data2
(example is a subset of my real data):
squirrel_id focal_age focal_ageclass focal_date focal_yr PC1 PC2
10342 1 Y 2008-07-14 2008 0.0932 -2.67
10342 3 A 2010-03-13 2010 -2.38 0.216
10342 3 A 2010-04-20 2010 0.0203 1.80
I'm trying to do two things:
data1
has 1 record at age==3
, while data2
has 2 records when age==3
)age==focal_age
, ageclass==focal_ageclass
, trialnumber==focalseq
, ageclass==focal_ageclass
, year==focal_yr
)Desired output - I am trying to have a final dataset that looks like this (where for age==3
the data1
record is only shown once, not twice):
squirrel_id age ageclass date year OFT1 MIS1 PC1 PC2
10342 1 Y 2008-05-19 2008 0.605 -4.19 NA NA
10342 1 Y 2008-07-14 2008 NA NA 0.0932 -2.67
10342 2 A 2009-05-31 2009 -1.85 1.14 NA NA
10342 3 A 2010-05-22 2010 -2.39 2.38 NA NA
10342 3 A 2010-03-13 2010 NA NA -2.38 0.216
10342 3 A 2010-04-20 2010 NA NA 0.0203 1.80
I am able to get partway here by doing:
data3<-full_join(data1, data2,
by=c("squirrel_id"="squirrel_id",
"year"="focal_yr",
"age"="focal_age",
"ageclass"="focal_ageclass"))
but this repeats the data1
values for age==3
for both age==3
rows in data2
(instead of just matching the first row only), giving this (not desired) output:
squirrel_id age ageclass trialdate focal_date year OFT1 MIS1 PC1 PC2
10342 1 Y 2008-05-19 2008-07-14 2008 0.605 -4.19 0.0932 -2.67
10342 2 A 2009-05-31 NA 2009 -1.85 1.14 NA NA
10342 3 A 2010-05-22 2010-03-13 2010 -2.39 2.38 -2.38 0.216
10342 3 A 2010-05-22 2010-04-20 2010 -2.39 2.38 0.0203 1.80
Updated Question: How do I have the matching records add NAs for all rows when doing a full_join
? Note that I'd rather a dplyr
solution, as I don't work in data.table
(like the answer to this OP) and I want to retain the rows that don't match (unlike this other OP).
Here is a data.table
approach
sample data
library(data.table)
data1 <- fread("squirrel_id age ageclass trialdate year OFT1 MIS1
10342 1 Y 2008-05-19 2008 0.605 -4.19
10342 2 A 2009-05-31 2009 -1.85 1.14
10342 3 A 2010-05-22 2010 -2.39 2.38")
data2 <- fread("squirrel_id focal_age focal_ageclass focal_date focal_yr PC1 PC2
10342 1 Y 2008-07-14 2008 0.0932 -2.67
10342 3 A 2010-03-13 2010 -2.38 0.216
10342 3 A 2010-04-20 2010 0.0203 1.80 ")
code
# Assuming the first five columns can be rowbound without problem,
# melt them to long
L <- lapply(list(data1, data2), melt, id.vars = 1:5)
# squirrel_id age ageclass trialdate year variable value
# 1: 10342 1 Y 2008-05-19 2008 OFT1 0.605
# 2: 10342 2 A 2009-05-31 2009 OFT1 -1.850
# 3: 10342 3 A 2010-05-22 2010 OFT1 -2.390
# 4: 10342 1 Y 2008-05-19 2008 MIS1 -4.190
# 5: 10342 2 A 2009-05-31 2009 MIS1 1.140
# 6: 10342 3 A 2010-05-22 2010 MIS1 2.380
#
# [[2]]
# squirrel_id focal_age focal_ageclass focal_date focal_yr variable value
# 1: 10342 1 Y 2008-07-14 2008 PC1 0.0932
# 2: 10342 3 A 2010-03-13 2010 PC1 -2.3800
# 3: 10342 3 A 2010-04-20 2010 PC1 0.0203
# 4: 10342 1 Y 2008-07-14 2008 PC2 -2.6700
# 5: 10342 3 A 2010-03-13 2010 PC2 0.2160
# 6: 10342 3 A 2010-04-20 2010 PC2 1.8000
# Rowbind, ignore columnnames
DT <- data.table::rbindlist(L, use.names = FALSE, fill = FALSE)
# squirrel_id age ageclass trialdate year variable value
# 1: 10342 1 Y 2008-05-19 2008 OFT1 0.6050
# 2: 10342 2 A 2009-05-31 2009 OFT1 -1.8500
# 3: 10342 3 A 2010-05-22 2010 OFT1 -2.3900
# 4: 10342 1 Y 2008-05-19 2008 MIS1 -4.1900
# 5: 10342 2 A 2009-05-31 2009 MIS1 1.1400
# 6: 10342 3 A 2010-05-22 2010 MIS1 2.3800
# 7: 10342 1 Y 2008-07-14 2008 PC1 0.0932
# 8: 10342 3 A 2010-03-13 2010 PC1 -2.3800
# 9: 10342 3 A 2010-04-20 2010 PC1 0.0203
#10: 10342 1 Y 2008-07-14 2008 PC2 -2.6700
#11: 10342 3 A 2010-03-13 2010 PC2 0.2160
#12: 10342 3 A 2010-04-20 2010 PC2 1.8000
# Cast to wide again
dcast(DT, ... ~ variable, value.var = "value")
# squirrel_id age ageclass trialdate year OFT1 MIS1 PC1 PC2
# 1: 10342 1 Y 2008-05-19 2008 0.605 -4.19 NA NA
# 2: 10342 1 Y 2008-07-14 2008 NA NA 0.0932 -2.670
# 3: 10342 2 A 2009-05-31 2009 -1.850 1.14 NA NA
# 4: 10342 3 A 2010-03-13 2010 NA NA -2.3800 0.216
# 5: 10342 3 A 2010-04-20 2010 NA NA 0.0203 1.800
# 6: 10342 3 A 2010-05-22 2010 -2.390 2.38 NA NA