apache-sparkspark3zstd

Spark 3.0.1 tasks are failing when using zstd compression codec


I'm using Spark 3.0.1 with user provided Hadoop 3.2.0 and Scala 2.12.10 running on Kubernetes.

Everything works fine when reading a parquet file compressed as snappy, however when I try to read a parquet file compressed as zstd several tasks fails under the following error:

java.io.IOException: Decompression error: Version not supported
at com.github.luben.zstd.ZstdInputStream.readInternal(ZstdInputStream.java:164)
at com.github.luben.zstd.ZstdInputStream.read(ZstdInputStream.java:120)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read1(BufferedInputStream.java:286)
at java.io.BufferedInputStream.read(BufferedInputStream.java:345)
at java.io.ObjectInputStream$PeekInputStream.read(ObjectInputStream.java:2781)
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2797)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:3274)
at java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java:934)
at java.io.ObjectInputStream.(ObjectInputStream.java:396)
at org.apache.spark.MapOutputTracker$.deserializeObject$1(MapOutputTracker.scala:954)
at org.apache.spark.MapOutputTracker$.deserializeMapStatuses(MapOutputTracker.scala:964)
at org.apache.spark.MapOutputTrackerWorker.$anonfun$getStatuses$2(MapOutputTracker.scala:856)
at org.apache.spark.util.KeyLock.withLock(KeyLock.scala:64)
at org.apache.spark.MapOutputTrackerWorker.getStatuses(MapOutputTracker.scala:851)
at org.apache.spark.MapOutputTrackerWorker.getMapSizesByExecutorId(MapOutputTracker.scala:808)
at org.apache.spark.shuffle.sort.SortShuffleManager.getReader(SortShuffleManager.scala:128)
at org.apache.spark.sql.execution.ShuffledRowRDD.compute(ShuffledRowRDD.scala:185)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)

What I don't get is that those tasks succeed after a retry but not always and thus my jobs are failing frequently. As mentioned before if I use the same dataset compressed as snappy everything works.

I've also tried building Spark and Hadoop, changing the zstd-jni version, but the same behavior still happens.

Does anyone knows what might be happening?

Thanks!


Solution

  • As commented, I updated Spark (3.0.1) configuration with following property to permanently fix the issue in my case. The file path and configuration added are as follows:

    $SPARK_HOME/conf/spark-defaults.conf
    spark.shuffle.mapStatus.compression.codec lz4