I'm using Spark 3.0.1 with user provided Hadoop 3.2.0 and Scala 2.12.10 running on Kubernetes.
Everything works fine when reading a parquet file compressed as snappy, however when I try to read a parquet file compressed as zstd several tasks fails under the following error:
java.io.IOException: Decompression error: Version not supported
at com.github.luben.zstd.ZstdInputStream.readInternal(ZstdInputStream.java:164)
at com.github.luben.zstd.ZstdInputStream.read(ZstdInputStream.java:120)
at java.io.BufferedInputStream.fill(BufferedInputStream.java:246)
at java.io.BufferedInputStream.read1(BufferedInputStream.java:286)
at java.io.BufferedInputStream.read(BufferedInputStream.java:345)
at java.io.ObjectInputStream$PeekInputStream.read(ObjectInputStream.java:2781)
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2797)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:3274)
at java.io.ObjectInputStream.readStreamHeader(ObjectInputStream.java:934)
at java.io.ObjectInputStream.(ObjectInputStream.java:396)
at org.apache.spark.MapOutputTracker$.deserializeObject$1(MapOutputTracker.scala:954)
at org.apache.spark.MapOutputTracker$.deserializeMapStatuses(MapOutputTracker.scala:964)
at org.apache.spark.MapOutputTrackerWorker.$anonfun$getStatuses$2(MapOutputTracker.scala:856)
at org.apache.spark.util.KeyLock.withLock(KeyLock.scala:64)
at org.apache.spark.MapOutputTrackerWorker.getStatuses(MapOutputTracker.scala:851)
at org.apache.spark.MapOutputTrackerWorker.getMapSizesByExecutorId(MapOutputTracker.scala:808)
at org.apache.spark.shuffle.sort.SortShuffleManager.getReader(SortShuffleManager.scala:128)
at org.apache.spark.sql.execution.ShuffledRowRDD.compute(ShuffledRowRDD.scala:185)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.ZippedPartitionsRDD2.compute(ZippedPartitionsRDD.scala:89)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:349)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:313)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
at org.apache.spark.scheduler.Task.run(Task.scala:127)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:446)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1377)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:449)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
What I don't get is that those tasks succeed after a retry but not always and thus my jobs are failing frequently. As mentioned before if I use the same dataset compressed as snappy everything works.
I've also tried building Spark and Hadoop, changing the zstd-jni version, but the same behavior still happens.
Does anyone knows what might be happening?
Thanks!
As commented, I updated Spark (3.0.1) configuration with following property to permanently fix the issue in my case. The file path and configuration added are as follows:
$SPARK_HOME/conf/spark-defaults.conf
spark.shuffle.mapStatus.compression.codec lz4