I'm try to execute the below hive query on Azure HDInsight cluster but it's taking unprecedented amount of time to finish. Did implemented hive settings but of no use. Below are the details:
Table
CREATE TABLE DB_MYDB.TABLE1(
MSTR_KEY STRING,
SDNT_ID STRING,
CLSS_CD STRING,
BRNCH_CD STRING,
SECT_CD STRING,
GRP_CD STRING,
GRP_NM STRING,
SUBJ_DES STRING,
GRP_DESC STRING,
DTL_DESC STRING,
ACTV_FLAG STRING,
CMP_NM STRING)
STORED AS ORC
TBLPROPERTIES ('ORC.COMPRESS'='SNAPPY');
Hive Query
INSERT OVERWRITE TABLE DB_MYDB.TABLE1
SELECT
CURR.MSTR_KEY,
CURR.SDNT_ID,
CURR.CLSS_CD,
CURR.BRNCH_CD,
CURR.SECT_CD,
CURR.GRP_CD,
CURR.GRP_NM,
CURR.SUBJ_DES,
CURR.GRP_DESC,
CURR.DTL_DESC,
'Y',
CURR.CMP_NM
FROM DB_MYDB.TABLE2 CURR
LEFT OUTER JOIN DB_MYDB.TABLE3 PREV
ON (CURR.SDNT_ID=PREV.SDNT_ID
AND CURR.CLSS_CD=PREV.CLSS_CD
AND CURR.BRNCH_CD=PREV.BRNCH_CD
AND CURR.SECT_CD=PREV.SECT_CD
AND CURR.GRP_CD=PREV.GRP_CD
AND CURR.GRP_NM=PREV.GRP_NM)
WHERE PREV.SDNT_ID IS NULL;
But the query is running for hours. Below is the detail:
--------------------------------------------------------------------------------
VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
--------------------------------------------------------------------------------
Map 1 .......... SUCCEEDED 46 46 0 0 0 0
Map 3 .......... SUCCEEDED 169 169 0 0 0 0
Reducer 2 .... RUNNING 1009 825 184 0 0 0
--------------------------------------------------------------------------------
VERTICES: 02/03 [======================>>----] 84% ELAPSED TIME: 13622.73 s
--------------------------------------------------------------------------------
I did set some hive properties
SET hive.execution.engine=tez;
SET hive.tez.container.size=10240;
SET tez.am.resource.memory.mb=10240;
SET tez.task.resource.memory.mb=10240;
SET hive.auto.convert.join.noconditionaltask.size=3470;
SET hive.vectorized.execution.enabled = true;
SET hive.vectorized.execution.reduce.enabled=true;
SET hive.vectorized.execution.reduce.groupby.enabled=true;
SET hive.cbo.enable=true;
SET hive.exec.compress.output=true;
SET mapred.output.compression.codec=org.apache.hadoop.io.compress.SnappyCodec;
SET mapred.output.compression.type=BLOCK;
SET hive.compute.query.using.stats=true;
SET hive.merge.mapfiles = true;
SET hive.merge.mapredfiles = true;
SET hive.merge.tezfiles = true;
SET hive.merge.size.per.task=268435456;
SET hive.merge.smallfiles.avgsize=16777216;
SET hive.merge.orcfile.stripe.level=true;
Records in Tables:
DB_MYDB.TABLE2= 337319653
DB_MYDB.TABLE3= 1946526625
There doesn't seem to be any impact on the query. Can anyone help me to:
Using the versions:
Hadoop 2.7.3.2.6.5.3033-1
Hive 1.2.1000.2.6.5.3033-1
Azure HDInsight 3.6
Attempt_1:
As suggested by @leftjoin tried to set the set hive.exec.reducers.bytes.per.reducer=32000000;
. This worked until the second last step of the hive script but at the last it failed with Caused by: java.io.IOException: Map_1: Shuffle failed with too many fetch failures and insufficient progress!
Last Query:
INSERT OVERWRITE TABLE DB_MYDB.TABLE3
SELECT
CURR_FULL.MSTR_KEY,
CURR_FULL.SDNT_ID,
CURR_FULL.CLSS_CD,
CURR_FULL.BRNCH_CD,
CURR_FULL.GRP_CD,
CURR_FULL.CHNL_CD,
CURR_FULL.GRP_NM,
CURR_FULL.GRP_DESC,
CURR_FULL.SUBJ_DES,
CURR_FULL.DTL_DESC,
(CASE WHEN CURR_FULL.SDNT_ID = SND_DELTA.SDNT_ID THEN 'Y' ELSE
CURR_FULL.SDNT_ID_FLAG END) AS SDNT_ID_FLAG,
CURR_FULL.CMP_NM
FROM
DB_MYDB.TABLE2 CURR_FULL
LEFT OUTER JOIN DB_MYDB.TABLE1 SND_DELTA
ON (CURR_FULL.SDNT_ID = SND_DELTA.SDNT_ID);
-----------------------------------------------------------------
VERTICES STATUS TOTAL COMPLETED RUNNING PENDING FAILED KILLED
-----------------------------------------------------------------
Map 1 ......... RUNNING 1066 1060 6 0 0 0
Map 4 .......... SUCCEEDED 3 3 0 0 0 0
Reducer 2 RUNNING 1009 0 22 987 0 0
Reducer 3 INITED 1 0 0 1 0 0
-----------------------------------------------------------------
VERTICES: 01/04 [================>>--] 99% ELAPSED TIME: 18187.78 s
Error:
Caused by: java.io.IOException: Map_1: Shuffle failed with too many fetch failures and insufficient progress!failureCounts=8, pendingInputs=1058, fetcherHealthy=false, reducerProgressedEnough=false, reducerStalled=false
If it is reducer vertex which is runnong slow, you can increase reducer parallelism by reducing bytes per reducer configuration. Check your current setting and reduce figure accordingly untill you get 2x or more reducers running:
set hive.exec.reducers.bytes.per.reducer=67108864; --example only, check your current settings
--and reduce accordingly to get twice more reducers on Reducer 2 vertex
Change setting, start query, check the number of containers on Reducer 2
vertex, terminate and change again if the number of containers has not increased.
If you want to increase parallelism on mappers also, read this answer: https://stackoverflow.com/a/48487306/2700344