I am splitting my dataset by simulation ID and applying a runjags functions to each subsest simultaneously.
Right now, each simulation contains 1000 observations. I know that sometimes the number of observations will differ since I will be dropping rows that meet certain criteria. I don't know how many observations will be dropped but I can calculate that by using groupobs <- fulldata %>% count(SimulID, sort=TRUE).
Is there a way that I can change N=1000 during each simulation run. It would mean having to rewrite the tempModel.txt file with every simulation that is run.
Thank you.
#Subset data by SimulID
subsetdata <- split(fulldata, as.factor(fulldata$SimulID))
#Count obs within each group
groupobs <- fulldata %>% count(SimulID, sort=TRUE)
modelString <- "
model{
#Model specification
for (i in 1:1000) {
y[i]~dnorm(muy[i], Inv_sig2_e)
muy[i]<-b0+b1*x1[i]+b2*x2[i]
}
#priors
b0~dnorm(0, 1.0E-6)
b1~dnorm(0, 1.0E-6)
b2~dnorm(0, 1.0E-6)
Inv_sig2_e~dgamma(1.0E-3, 1.0E-3)
#parameter transformation
Sig2_e<-1/Inv_sig2_e
}
"
writeLines(modelString, "tempModel.txt")
output_models <- lapply(subsetdata, function(x){
model_data = x
initsList1 <- list(b0=1, b1=1, b2=1, Inv_sig2_e=1)
initsList2 <- list(b0=1, b1=2, b2=3, Inv_sig2_e=1)
initsList3 <- list(b0=2, b1=3, b2=4, Inv_sig2_e=1)
runJagsOut <- run.jags(method = "parallel",
model = "tempModel.txt",
# NOTE: theta and omega are vectors:
monitor = c( "b0","b1","b2","Sig2_e"),
data = model_data,
inits = list(initsList1, initsList2, initsList3), # NOTE: Let JAGS initialize.
n.chains = 3, # NOTE: Not only 1 chain.
adapt = 500,
burnin = 2500,
sample = 2500,
thin = 1,
summarise = FALSE,
plots = FALSE)
})
You have several options
You could construct the model string on the fly. [The model
argument to run.jags
can contain a character string instead of a file name, so there's no need to write to a file and then read it in again.]
You can add an element to your data
list (x
in your code) that contains the number of observations,
x[["groupobs"]] <- fulldata %>% count(SimulID, sort=TRUE)
and refer to that in your model_string
:
for (i in 1:groupobs)
You could calculate the number of observations on the fly:
for (i in 1:length(y))
in your model_string
.
Edit In response to OP's comment, here are implementations of each of my three suggestins above. The OP's code is not reproducible as they haven't provided their data, so I will reanalyse an example used by O'Quigley et al in their 1990 CRM paper. To reproduce OP's grouped analysis, I'll duplicate the data and simply analyse it twice.
Input data:
dput(observedData)
structure(list(Cohort = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L,
10L, 11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L,
23L, 24L, 25L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L,
12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L,
25L), SubjectID = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
24L, 25L, 1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L,
13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L, 24L, 25L
), Dose = c(3, 4, 4, 3, 3, 2, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 1, 1, 3, 4, 4, 3, 3, 2, 1, 1, 1, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1), Toxicity = c(0, 0, 1, 0,
1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1,
0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0,
1, 0, 1, 1), Trial = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)), row.names = c(NA,
-50L), class = c("tbl_df", "tbl", "data.frame"))
I find the tidyverse's group_map
function provides code that is both more compact and easier to understand than lapply
, so I'll use that.
library(tidyverse)
library(runjags)
Option 1: paste the observation count into the model string.
modelString <-
"model {
#Prior
a ~ dexp(1)
#Likelihood
for (i in 1:n) {
Toxicity[i] ~ dbern(((tanh(XHat[i]) + 1)/2)**a)
}
}
#monitor# a"
fit1 <- function(.x, .y) {
modelString <- paste0(
"model {
#Prior
a ~ dexp(1)
#Likelihood
for (i in 1:",
.x %>% nrow(),
") {
Toxicity[i] ~ dbern(((tanh(XHat[i]) + 1)/2)**a)
}
}
#monitor# a")
d <- list(XHat=.x$Dose, Toxicity=.x$Toxicity)
run.jags(modelString, data=d)
}
observedData %>% group_by(Trial) %>% group_map(fit1)
Option 2: pass the observation count as an element of data
modelString <-
"model {
#Prior
a ~ dexp(1)
#Likelihood
for (i in 1:n) {
Toxicity[i] ~ dbern(((tanh(XHat[i]) + 1)/2)**a)
}
}
#monitor# a"
fit2 <- function(.x, .y) {
d <- list(XHat=.x$Dose, Toxicity=.x$Toxicity, n=.x %>% nrow())
run.jags(modelString, data=d)
}
observedData %>% group_by(Trial) %>% group_map(fit2)
Option 3: Let JAGS calculate the observation count
modelString <-
"model {
#Prior
a ~ dexp(1)
#Likelihood
for (i in 1:length(Toxicity)) {
Toxicity[i] ~ dbern(((tanh(XHat[i]) + 1)/2)**a)
}
}
#monitor# a"
fit3 <- function(.x, .y) {
d <- list(XHat=.x$Dose, Toxicity=.x$Toxicity)
run.jags(modelString, data=d)
}
observedData %>% group_by(Trial) %>% group_map(fit3)
My personal preference is for option 2.
I've used .x
and .y
as argument names to the three fitX
functions to match the convention used in the online documentation for group_map
.