i have a 2D numpy array. I'm trying to compute the similarities between rows and put it into a similarities
array. Is this possible without loop? Thanks for your time!
# ratings.shape = (943, 1682)
arri = np.zeros(943)
arri = np.where(arri == 0)[0]
arrj = np.zeros(943)
arrj = np.where(arrj ==0)[0]
similarities = np.zeros((ratings.shape[0], ratings.shape[0]))
similarities[arri, arrj] = np.abs(ratings[arri]-ratings[arrj])
I want to make a 2D-array similarities in that similarities[i, j] is the differentiation between row i and row j in ratings
[ValueError: shape mismatch: value array of shape (943,1682) could not be broadcast to indexing result of shape (943,)] [1][1]: https://i.sstatic.net/gtst9.png
The problem is how numpy iterates through the array when indexing a two-dimentional array with two arrays.
First some setup:
import numpy;
ratings = numpy.arange(1, 6)
indicesX = numpy.indices((ratings.shape[0],1))[0]
indicesY = numpy.indices((ratings.shape[0],1))[0]
ratings
: [1 2 3 4 5]
indicesX
: [[0][1][2][3][4]]
indicesY
: [[0][1][2][3][4]]
Now lets see what your program produces:
similarities = numpy.zeros((ratings.shape[0], ratings.shape[0]))
similarities[indicesX, indicesY] = numpy.abs(ratings[indicesX]-ratings[0])
similarities
:
[[0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 2. 0. 0.]
[0. 0. 0. 3. 0.]
[0. 0. 0. 0. 4.]]
As you can see, numpy iterates over similarities
basically like the following:
for i in range(5):
similarities[indicesX[i], indicesY[i]] = numpy.abs(ratings[i]-ratings[0])
similarities
:
[[0. 0. 0. 0. 0.]
[0. 1. 0. 0. 0.]
[0. 0. 2. 0. 0.]
[0. 0. 0. 3. 0.]
[0. 0. 0. 0. 4.]]
Now instead we need indices like the following to iterate through the entire array:
indecesX = [0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4]
indecesY = [0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3,4,4,4,4,4]
We do that the following:
# Reshape indicesX from (x,1) to (x,). Thats important for numpy.tile().
indicesX = indicesX.reshape(indicesX.shape[0])
indicesX = numpy.tile(indicesX, ratings.shape[0])
indicesY = numpy.repeat(indicesY, ratings.shape[0])
indicesX
: [0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4]
indicesY
: [0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4]
Perfect! Now just call similarities[indicesX, indicesY] = numpy.abs(ratings[indicesX]-ratings[indicesY])
again and we see:
similarities
:
[[0. 1. 2. 3. 4.]
[1. 0. 1. 2. 3.]
[2. 1. 0. 1. 2.]
[3. 2. 1. 0. 1.]
[4. 3. 2. 1. 0.]]
Here the whole code again:
import numpy;
ratings = numpy.arange(1, 6)
indicesX = numpy.indices((ratings.shape[0],1))[0]
indicesY = numpy.indices((ratings.shape[0],1))[0]
similarities = numpy.zeros((ratings.shape[0], ratings.shape[0]))
indicesX = indicesX.reshape(indicesX.shape[0])
indicesX = numpy.tile(indicesX, ratings.shape[0])
indicesY = numpy.repeat(indicesY, ratings.shape[0])
similarities[indicesX, indicesY] = numpy.abs(ratings[indicesX]-ratings[indicesY])
print(similarities)
You commented on your own post to improve it. You should edit your question instead of commenting on it, when you want to improve it.