javaalgorithmmedianmedian-of-medians

How to implement the medians of medians algorithm in Java


I am trying to implement the median of medians algorithm in Java. The algorithm shall determine the median of a set of numbers. I tried to implement the pseudo code on wikipedia:

https://en.wikipedia.org/wiki/Median_of_medians

I am getting a buffer overflow and don't know why. Due to the recursions it's quite difficult to keep track of the code for me.

    import java.util.Arrays;

public class MedianSelector {
    private static final int CHUNK = 5;
    
    public static void main(String[] args) {
        int[] test = {9,8,7,6,5,4,3,2,1,0,13,11,10};
        lowerMedian(test);
        System.out.print(Arrays.toString(test));
    }
    
    /**
     * Computes and retrieves the lower median of the given array of
     * numbers using the Median algorithm presented in the lecture.
     * 
     * @param input numbers.
     * @return the lower median.
     * @throw IllegalArgumentException if the array is {@code null} or empty.
    */
    public static int lowerMedian(int[] numbers) {
        if(numbers == null || numbers.length == 0) {
            throw new IllegalArgumentException();
        }
        
        return numbers[select(numbers, 0, numbers.length - 1, (numbers.length - 1) / 2)];
    }
    
    private static int select(int[] numbers, int left, int right, int i) {
        
        if(left == right) {
            return left;
        }
        
        int pivotIndex = pivot(numbers, left, right);
        pivotIndex = partition(numbers, left, right, pivotIndex, i);
        
        if(i == pivotIndex) {
            return i;
        }else if(i < pivotIndex) {
            return select(numbers, left, pivotIndex - 1, i); 
        }else {
            return select(numbers, left, pivotIndex + 1, i);
        }
    }
    
    private static int pivot(int numbers[], int left, int right) {
        if(right - left < CHUNK) {
            return partition5(numbers, left, right);
        }
        
        for(int i=left; i<=right; i=i+CHUNK) {
            int subRight = i + (CHUNK-1);
            
            if(subRight > right) {
                subRight = right;
            }
            
            int medChunk = partition5(numbers, i, subRight);
                    
            int tmp = numbers[medChunk];
            numbers[medChunk] = numbers[(int) (left + Math.floor((double) (i-left)/CHUNK))];
            numbers[(int) (left + Math.floor((double) (i-left)/CHUNK))] = tmp;
        }
        
        int mid = (right - left) / 10 + left +1;
        return select(numbers, left, (int) (left + Math.floor((right - left) / CHUNK)), mid);
    }
    
    private static int partition(int[] numbers, int left, int right, int idx, int k) {
        int pivotVal = numbers[idx];
        int storeIndex = left;
        int storeIndexEq = 0;
        int tmp = 0;
        
        tmp = numbers[idx];
        numbers[idx] = numbers[right];
        numbers[right] = tmp;
        
        for(int i=left; i<right; i++) {
            if(numbers[i] < pivotVal) {
                tmp = numbers[i];
                numbers[i] = numbers[storeIndex];
                numbers[storeIndex] = tmp;
                storeIndex++;
            }
        }
        
        storeIndexEq = storeIndex;
        
        for(int i=storeIndex; i<right; i++) {
            if(numbers[i] == pivotVal) {
                tmp = numbers[i];
                numbers[i] = numbers[storeIndexEq];
                numbers[storeIndexEq] = tmp;
                storeIndexEq++;
            }
        }
        
        tmp = numbers[right];
        numbers[right] = numbers[storeIndexEq];
        numbers[storeIndexEq] = tmp;
        
        if(k < storeIndex) {
            return storeIndex;
        }
        
        if(k <= storeIndexEq) {
            return k;
        }
           
        return storeIndexEq;
    }
    
    //Insertion sort
    private static int partition5(int[] numbers, int left, int right) {
        int i = left + 1;
        int j = 0;
        
        while(i<=right) {
            j= i;
            while(j>left && numbers[j-1] > numbers[j]) {
                int tmp = numbers[j-1];
                numbers[j-1] = numbers[j];
                numbers[j] = tmp;
                j=j-1;
            }
            i++;
        }
        
        return left + (right - left) / 2;
    }
}

Confirm n (in the pseudo code) or i (in my code) stand for the position of the median? So lets assume our array is number = {9,8,7,6,5,4,3,2,1,0}. I would call select{numbers, 0, 9,4), correct?

I don't understand the calculation of mid in pivot? Why is there a division by 10? Maybe there is a mistake in the pseudo code?

Thanks for your help.


Solution

  • EDIT: It turns out the switch from iteration to recursion was a red herring. The actual issue, identified by the OP, was in the arguments to the 2nd recursive select call.

    This line:

    return select(numbers, left, pivotIndex + 1, i);
    

    should be

    return select(numbers, pivotIndex + 1, right, i);
    

    I'll leave the original answer below as I don't want to appear to be clever than I actually was.


    I think you may have misinterpreted the pseudocode for the select method - it uses iteration rather than recursion.

    Here's your current implementation:

    private static int select(int[] numbers, int left, int right, int i) {
        
        if(left == right) {
            return left;
        }
        
        int pivotIndex = pivot(numbers, left, right);
        pivotIndex = partition(numbers, left, right, pivotIndex, i);
        
        if(i == pivotIndex) {
            return i;
        }else if(i < pivotIndex) {
            return select(numbers, left, pivotIndex - 1, i); 
        }else {
            return select(numbers, left, pivotIndex + 1, i);
        }
    }
    

    And the pseudocode

    function select(list, left, right, n)
        loop
            if left = right then
                return left
            pivotIndex := pivot(list, left, right)
            pivotIndex := partition(list, left, right, pivotIndex, n)
            if n = pivotIndex then
                return n
            else if n < pivotIndex then
                right := pivotIndex - 1
            else
                left := pivotIndex + 1
    

    This would typically be implemented using a while loop:

      private static int select(int[] numbers, int left, int right, int i) {
          while(true)
          {
              if(left == right) {
                  return left;
              }
              
              int pivotIndex = pivot(numbers, left, right);
              pivotIndex = partition(numbers, left, right, pivotIndex, i);
              
              if(i == pivotIndex) {
                  return i;
              }else if(i < pivotIndex) {
                  right = pivotIndex - 1; 
              }else {
                  left = pivotIndex + 1;
              }
          }
      }
    

    With this change your code appears to work, though obviously you'll need to test to confirm.

    int[] test = {9,8,7,6,5,4,3,2,1,0,13,11,10};
    System.out.println("Lower Median: " + lowerMedian(test));
    
    int[] check = test.clone();
    Arrays.sort(check);
    System.out.println(Arrays.toString(check));
    

    Output:

    Lower Median: 6
    [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13]