I'm creating an int (32 bit) vector with 1024 * 1024 * 1024 elements like so:
std::vector<int> nums;
for (size_t i = 0; i < 1024 * 1024 * 1024; i++) {
nums.push_back(rand() % 1024);
}
which holds 4 GB of random data at that point. And then I'm simply summing up all the elements in the vector like so:
uint64_t total = 0;
for (auto cn = nums.begin(); cn < nums.end(); cn++) {
total += *cn;
}
This takes about ~0.18 seconds which means the data is processed at around 22.2 GB/s. I'm running this on an M1 with a much higher memory bandwidth of about 60GB/s. Is there a way to make the above code run faster on a single core?
EDIT: Manual SIMD version:
int32x4_t simd_total = vmovq_n_s32(0);
for (auto cn = nums.begin(); cn < nums.end()-3; cn +=4) {
const int32_t v[4] = {cn[0], cn[1], cn[2], cn[3]}
simd_total = vaddq_s32(simd_total, vld1q_s32(v));
}
return vaddvq_s32(simd_total);
The SIMD version has the same performance as the non-manual-SIMD version.
EDIT 2: Alright, so I changed the vector elements to uint32_t and also changed the result type to uint32_t(as suggested by @Peter Cordes):
uint32_t sum_ints_32(const std::vector<uint32_t>& nums) {
uint32_t total = 0;
for (auto cn = nums.begin(); cn < nums.end(); cn++) {
total += *cn;
}
return total;
}
This runs much faster (~45 GB/s). This is the disassembly:
0000000100002218 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE>:
100002218: a940200c ldp x12, x8, [x0]
10000221c: eb08019f cmp x12, x8
100002220: 54000102 b.cs 100002240 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x28> // b.hs, b.nlast
100002224: aa2c03e9 mvn x9, x12
100002228: 8b090109 add x9, x8, x9
10000222c: f1006d3f cmp x9, #0x1b
100002230: 540000c8 b.hi 100002248 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x30> // b.pmore
100002234: 52800000 mov w0, #0x0 // #0
100002238: aa0c03e9 mov x9, x12
10000223c: 14000016 b 100002294 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x7c>
100002240: 52800000 mov w0, #0x0 // #0
100002244: d65f03c0 ret
100002248: d342fd29 lsr x9, x9, #2
10000224c: 9100052a add x10, x9, #0x1
100002250: 927ded4b and x11, x10, #0x7ffffffffffffff8
100002254: 8b0b0989 add x9, x12, x11, lsl #2
100002258: 9100418c add x12, x12, #0x10
10000225c: 6f00e400 movi v0.2d, #0x0
100002260: aa0b03ed mov x13, x11
100002264: 6f00e401 movi v1.2d, #0x0
100002268: ad7f8d82 ldp q2, q3, [x12, #-16]
10000226c: 4ea08440 add v0.4s, v2.4s, v0.4s
100002270: 4ea18461 add v1.4s, v3.4s, v1.4s
100002274: 9100818c add x12, x12, #0x20
100002278: f10021ad subs x13, x13, #0x8
10000227c: 54ffff61 b.ne 100002268 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x50> // b.any
100002280: 4ea08420 add v0.4s, v1.4s, v0.4s
100002284: 4eb1b800 addv s0, v0.4s
100002288: 1e260000 fmov w0, s0
10000228c: eb0b015f cmp x10, x11
100002290: 540000a0 b.eq 1000022a4 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x8c> // b.none
100002294: b840452a ldr w10, [x9], #4
100002298: 0b000140 add w0, w10, w0
10000229c: eb08013f cmp x9, x8
1000022a0: 54ffffa3 b.cc 100002294 <__Z11sum_ints_32RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x7c> // b.lo, b.ul, b.last
1000022a4: d65f03c0 ret
I also rewrote the Manual-SIMD version:
uint32_t sum_ints_simd_2(const std::vector<uint32_t>& nums) {
uint32x4_t simd_total = vmovq_n_u32(0);
for (auto cn = nums.begin(); cn < nums.end()-3; cn +=4) {
const uint32_t v[4] = { cn[0], cn[1], cn[2], cn[3] };
simd_total = vaddq_u32(simd_total, vld1q_u32(v));
}
return vaddvq_u32(simd_total);
}
which still runs 2x slower than the non-manual-SIMD version and results in the following disassembly:
0000000100002464 <__Z15sum_ints_simd_2RKNSt3__16vectorIjNS_9allocatorIjEEEE>:
100002464: a9402408 ldp x8, x9, [x0]
100002468: d1003129 sub x9, x9, #0xc
10000246c: 6f00e400 movi v0.2d, #0x0
100002470: eb09011f cmp x8, x9
100002474: 540000c2 b.cs 10000248c <__Z15sum_ints_simd_2RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x28> // b.hs, b.nlast
100002478: 6f00e400 movi v0.2d, #0x0
10000247c: 3cc10501 ldr q1, [x8], #16
100002480: 4ea08420 add v0.4s, v1.4s, v0.4s
100002484: eb09011f cmp x8, x9
100002488: 54ffffa3 b.cc 10000247c <__Z15sum_ints_simd_2RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x18> // b.lo, b.ul, b.last
10000248c: 4eb1b800 addv s0, v0.4s
100002490: 1e260000 fmov w0, s0
100002494: d65f03c0 ret
To reach the same speed as the auto-vectorized version, we can use a uint32x4x2 instead of uint32x4 for our manual-SIMD version:
uint32_t sum_ints_simd_3(const std::vector<uint32_t>& nums) {
uint32x4x2_t simd_total;
simd_total.val[0] = vmovq_n_u32(0);
simd_total.val[1] = vmovq_n_u32(0);
for (auto cn = nums.begin(); cn < nums.end()-7; cn +=8) {
const uint32_t v[4] = { cn[0], cn[1], cn[2], cn[3] };
const uint32_t v2[4] = { cn[4], cn[5], cn[6], cn[7] };
simd_total.val[0] = vaddq_u32(simd_total.val[0], vld1q_u32(v));
simd_total.val[1] = vaddq_u32(simd_total.val[1], vld1q_u32(v2));
}
return vaddvq_u32(simd_total.val[0]) + vaddvq_u32(simd_total.val[1]);
}
And to gain even more speed we can leverage uint32x4x4 (which gets us about ~53 GB/s):
uint32_t sum_ints_simd_4(const std::vector<uint32_t>& nums) {
uint32x4x4_t simd_total;
simd_total.val[0] = vmovq_n_u32(0);
simd_total.val[1] = vmovq_n_u32(0);
simd_total.val[2] = vmovq_n_u32(0);
simd_total.val[3] = vmovq_n_u32(0);
for (auto cn = nums.begin(); cn < nums.end()-15; cn +=16) {
const uint32_t v[4] = { cn[0], cn[1], cn[2], cn[3] };
const uint32_t v2[4] = { cn[4], cn[5], cn[6], cn[7] };
const uint32_t v3[4] = { cn[8], cn[9], cn[10], cn[11] };
const uint32_t v4[4] = { cn[12], cn[13], cn[14], cn[15] };
simd_total.val[0] = vaddq_u32(simd_total.val[0], vld1q_u32(v));
simd_total.val[1] = vaddq_u32(simd_total.val[1], vld1q_u32(v2));
simd_total.val[2] = vaddq_u32(simd_total.val[2], vld1q_u32(v3));
simd_total.val[3] = vaddq_u32(simd_total.val[3], vld1q_u32(v4));
}
return vaddvq_u32(simd_total.val[0])
+ vaddvq_u32(simd_total.val[1])
+ vaddvq_u32(simd_total.val[2])
+ vaddvq_u32(simd_total.val[3]);
}
which gets us the following disassembly:
0000000100005e34 <__Z15sum_ints_simd_4RKNSt3__16vectorIjNS_9allocatorIjEEEE>:
100005e34: a9402408 ldp x8, x9, [x0]
100005e38: d100f129 sub x9, x9, #0x3c
100005e3c: 6f00e403 movi v3.2d, #0x0
100005e40: 6f00e402 movi v2.2d, #0x0
100005e44: 6f00e401 movi v1.2d, #0x0
100005e48: 6f00e400 movi v0.2d, #0x0
100005e4c: eb09011f cmp x8, x9
100005e50: 540001c2 b.cs 100005e88 <__Z15sum_ints_simd_4RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x54> // b.hs, b.nlast
100005e54: 6f00e400 movi v0.2d, #0x0
100005e58: 6f00e401 movi v1.2d, #0x0
100005e5c: 6f00e402 movi v2.2d, #0x0
100005e60: 6f00e403 movi v3.2d, #0x0
100005e64: ad401504 ldp q4, q5, [x8]
100005e68: ad411d06 ldp q6, q7, [x8, #32]
100005e6c: 4ea38483 add v3.4s, v4.4s, v3.4s
100005e70: 4ea284a2 add v2.4s, v5.4s, v2.4s
100005e74: 4ea184c1 add v1.4s, v6.4s, v1.4s
100005e78: 4ea084e0 add v0.4s, v7.4s, v0.4s
100005e7c: 91010108 add x8, x8, #0x40
100005e80: eb09011f cmp x8, x9
100005e84: 54ffff03 b.cc 100005e64 <__Z15sum_ints_simd_4RKNSt3__16vectorIjNS_9allocatorIjEEEE+0x30> // b.lo, b.ul, b.last
100005e88: 4eb1b863 addv s3, v3.4s
100005e8c: 1e260068 fmov w8, s3
100005e90: 4eb1b842 addv s2, v2.4s
100005e94: 1e260049 fmov w9, s2
100005e98: 0b080128 add w8, w9, w8
100005e9c: 4eb1b821 addv s1, v1.4s
100005ea0: 1e260029 fmov w9, s1
100005ea4: 0b090108 add w8, w8, w9
100005ea8: 4eb1b800 addv s0, v0.4s
100005eac: 1e260009 fmov w9, s0
100005eb0: 0b090100 add w0, w8, w9
100005eb4: d65f03c0 ret
Crazy stuff
Does -march=native
help? IDK if there are any SIMD features that Apple clang won't already take advantage on the first generation of AArch64 MacOS CPUs, but clang might just be taking baseline AArch64 in general.
Can you go faster if you use uint32_t
sums, so the compiler doesn't have to widen each element before adding? That means each SIMD instruction can only handle half as much data from memory as with same-sized accumulators.
https://godbolt.org/z/7c19913jE shows that Thomas Matthews' unrolling suggestion does actually get clang11 -O3 -march=apple-a13
to unroll the SIMD-vectorized asm loops it makes. That source change is not a win in general, e.g. much worse for x86-64 clang -O3 -march=haswell
, but it does help here.
Another possibility is that a single core can't saturate memory bandwidth. But benchmark results published by Anandtech for example seem to rule that out: they found that even a single core can achieve 59GB/s, although that was probably running an optimize memcpy function.
(They say The fact that a single Firestorm core can almost saturate the memory controllers is astounding and something we’ve never seen in a design before. That sounds a bit weird; desktop / laptop Intel CPUs come pretty close, unlike their "server" chips. Maybe not as close as Apple?
M1 has pretty low memory latency compared to modern x86, so that probably helps a single core be able to track the incoming loads to keep the necessary latency x bandwidth product in flight, even with its high memory bandwidth.