I'm struggling in creating a data generator in PyTorch to extract 2D images from many 3D cubes saved in .dat
format
There is a total of 200
3D cubes each having a 128*128*128
shape. Now I want to extract 2D images from all of these cubes along length and breadth.
For example, a
is a cube having size 128*128*128
So I want to extract all 2D images along length i.e., [:, i, :]
which will get me 128 2D images along the length, and similarly i want to extract along width i.e., [:, :, i]
, which will give me 128 2D images along the width. So therefore i get a total of 256 2D images from 1 3D cube, and i want to repeat this whole process for all 200 cubes, there by giving me 51200 2D images.
So far I've tried a very basic implementation which is working fine but is taking approximately 10 minutes to run. I want you guys to help me create a more optimal implementation keeping in mind time and space complexity. Right now my current approach has a time complexity of O(n2), can we dec it further to reduce the time complexity
I'm providing below the current implementation
from os.path import join as pjoin
import torch
import numpy as np
import os
from tqdm import tqdm
from torch.utils import data
class DataGenerator(data.Dataset):
def __init__(self, is_transform=True, augmentations=None):
self.is_transform = is_transform
self.augmentations = augmentations
self.dim = (128, 128, 128)
seismicSections = [] #Input
faultSections = [] #Ground Truth
for fileName in tqdm(os.listdir(pjoin('train', 'seis')), total = len(os.listdir(pjoin('train', 'seis')))):
unrolledVolSeismic = np.fromfile(pjoin('train', 'seis', fileName), dtype = np.single) #dat file contains unrolled cube, we need to reshape it
reshapedVolSeismic = np.transpose(unrolledVolSeismic.reshape(self.dim)) #need to transpose the axis to get height axis at axis = 0, while length (axis = 1), and width(axis = 2)
unrolledVolFault = np.fromfile(pjoin('train', 'fault', fileName),dtype=np.single)
reshapedVolFault = np.transpose(unrolledVolFault.reshape(self.dim))
for idx in range(reshapedVolSeismic.shape[2]):
seismicSections.append(reshapedVolSeismic[:, :, idx])
faultSections.append(reshapedVolFault[:, :, idx])
for idx in range(reshapedVolSeismic.shape[1]):
seismicSections.append(reshapedVolSeismic[:, idx, :])
faultSections.append(reshapedVolFault[:, idx, :])
self.seismicSections = seismicSections
self.faultSections = faultSections
def __len__(self):
return len(self.seismicSections)
def __getitem__(self, index):
X = self.seismicSections[index]
Y = self.faultSections[index]
return X, Y
Please Help!!!
why not storing only the 3D data in mem, and let the __getitem__
method "slice" it on the fly?
class CachedVolumeDataset(Dataset):
def __init__(self, ...):
super(...)
self._volumes_x = # a list of 200 128x128x128 volumes
self._volumes_y = # a list of 200 128x128x128 volumes
def __len__(self):
return len(self._volumes_x) * (128 + 128)
def __getitem__(self, index):
# extract volume index from general index:
vidx = index // (128 + 128)
# extract slice index
sidx = index % (128 + 128)
if sidx < 128:
# first dim
x = self._volumes_x[vidx][:, :, sidx]
y = self._volumes_y[vidx][:, :, sidx]
else:
sidx -= 128
# second dim
x = self._volumes_x[vidx][:, sidx, :]
y = self._volumes_y[vidx][:, sidx, :]
return torch.squeeze(x), torch.squeeze(y)