Is it possible to get the following minimal example working with experimental_compile=True
? I've seen some big speedups with this argument hence I am keen to figure out how to get it working. Thanks!
import tensorflow as tf
print(tf.__version__)
# ===> 2.2.0-dev20200409
x = tf.reshape(tf.range(25, dtype=tf.float32), [5, 5])
row_lengths = tf.constant([2, 1, 2])
ragged_tensor = tf.RaggedTensor.from_row_lengths(x, row_lengths)
for i, tensor in enumerate(ragged_tensor):
print(f"i: {i}\ntensor:\n{tensor}\n")
# ==>
# i: 0
# tensor:
# [[0. 1. 2. 3. 4.]
# [5. 6. 7. 8. 9.]]
# i: 1
# tensor:
# [[10. 11. 12. 13. 14.]]
# i: 2
# tensor:
# [[15. 16. 17. 18. 19.]
# [20. 21. 22. 23. 24.]]
@tf.function(autograph=False, experimental_compile=True)
def while_loop_fail():
num_rows = ragged_tensor.nrows()
def cond(i, _):
return i < num_rows
def body(i, running_total):
return i + 1, running_total + tf.reduce_sum(ragged_tensor[i])
_, total = tf.while_loop(cond, body, [0, 0.0])
return total
while_loop_fail()
# ===>
# tensorflow.python.framework.errors_impl.InvalidArgumentError: XLA can't deduce compile time constant output shape for strided slice: [?,5], output shape must be a compile-time constant
# [[{{node while/RaggedGetItem/strided_slice_4}}]]
# [[while]]
# This error might be occurring with the use of xla.compile. If it is not necessary that every Op be compiled with XLA, an alternative is to use auto_jit with OptimizerOptions.global_jit_level = ON_2 or the environment variable TF_XLA_FLAGS="tf_xla_auto_jit=2" which will attempt to use xla to compile as much of the graph as the compiler is able to. [Op:__inference_while_loop_fail_481]
For anyone having this sort of issue, I just noticed that on TensorFlow 2.5 this works (replacing experimental_compile
with jit_compile
):
import tensorflow as tf
print(tf.__version__)
# 2.5.0
x = tf.reshape(tf.range(25, dtype=tf.float32), [5, 5])
row_lengths = tf.constant([2, 1, 2])
ragged_tensor = tf.RaggedTensor.from_row_lengths(x, row_lengths)
for i, tensor in enumerate(ragged_tensor):
print(f"i: {i}\ntensor:\n{tensor}\n")
# ==>
# i: 0
# tensor:
# [[0. 1. 2. 3. 4.]
# [5. 6. 7. 8. 9.]]
# i: 1
# tensor:
# [[10. 11. 12. 13. 14.]]
# i: 2
# tensor:
# [[15. 16. 17. 18. 19.]
# [20. 21. 22. 23. 24.]]
@tf.function(autograph=False, jit_compile=True)
def while_loop_works():
num_rows = ragged_tensor.nrows()
def cond(i, _):
return i < num_rows
def body(i, running_total):
return i + 1, running_total + tf.reduce_sum(ragged_tensor[i])
_, total = tf.while_loop(cond, body, [0, 0.0])
return total
while_loop_works()
# 2021-06-28 13:18:19.253261: I tensorflow/compiler/jit/xla_compilation_cache.cc:337] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.
# <tf.Tensor: shape=(), dtype=float32, numpy=300.0>