I am trying to implement a global singleton variable in the header-only library in C (not C++). So after searching on this forum and elsewhere, I came across a variation of Meyer's singleton that I am adapting to C here:
/* File: sing.h */
#ifndef SING_H
#define SING_H
inline int * singleton()
{
static int foo = 0;
return &foo;
}
#endif
Notice that I am returning a pointer because C lacks & referencing available in C++, so I must work around it.
OK, now I want to test it, so here is a simple test code:
/* File: side.h */
#ifndef SIDE_H
#define SIDE_H
void side();
#endif
/*File: side.c*/
#include "sing.h"
#include <stdio.h>
void side()
{
printf("%d\n",*(singleton()));
}
/*File: main.c*/
#include "sing.h"
#include "side.h"
#include <stdio.h>
int main(int argc, char * argv[])
{
/* Output default value - expected output: 0 */
printf("%d\n",*(singleton()));
*(singleton()) = 5;
/* Output modified value - expected output: 5 */
printf("%d\n",*(singleton()));
/* Output the same value from another module - expected output: 5*/
side();
return 0;
}
Compiles and runs fine in MSVC in C mode (also in C++ mode too, but that's not the topic). However, in gcc it outputs two warnings (warning: ‘foo’ is static but declared in inline function ‘singleton’ which is not static), and produces an executable which then segfaults when I attempt to run it. The warning itself kind of makes sense to me (in fact, I am surprised I don't get it in MSVC), but segfault kind of hints at the possibility that gcc never compiles foo as a static variable, making it a local variable in stack and then returns expired stack address of that variable.
I tried declaring the singleton as extern inline
, it compiles and runs fine in MSVC, results in linker error in gcc (again, I don't complain about linker error, it is logical).
I also tried static inline
(compiles fine in both MSVC and gcc, but predictably runs with wrong output in the third line because the side.c translation unit now has its own copy of singleton.
So, what am I doing wrong in gcc? I have neither of these problems in C++, but I can't use C++ in this case, it must be straight C solution.
I could also accept any other form of singleton implementation that works from header-only library in straight C in both gcc and MSVC.
I am trying to implement a global singleton variable in the header-only library in C (not C++).
By "global", I take you to mean "having static storage duration and external linkage". At least, that's as close as C can come. That is also as close as C can come to a "singleton" of a built-in type, so in that sense, the term "global singleton" is redundant.
Notice that I am returning a pointer because C lacks & referencing available in C++, so I must work around it.
It is correct that C does not have references, but you would not need either pointer or reference if you were not using a function to wrap access to the object. I'm not really seeing what you are trying to gain by that. You would likely find it easier to get what you are looking for without. For example, when faced with duplicate external defintions of the same variable identifier, the default behavior of all but the most recent versions of GCC was to merge them into a single variable. Although current GCC reports this situation as an error, the old behavior is still available by turning on a command-line switch.
On the other hand, your inline function approach is unlikely to work in many C implementations. Note especially that inline
semantics are rather different in C than in C++, and external inline functions in particular are rarely useful in C. Consider these provisions of the C standard:
paragraph 6.7.4/3 (a language constraint):
An inline definition of a function with external linkage shall not contain a definition of a modifiable object with static or thread storage duration, and shall not contain a reference to an identifier with internal linkage.
Your example code is therefore non-conforming, and conforming compilers are required to diagnose it. They may accept your code nonetheless, but they may do anything they choose with it. It seems unreasonably hopeful to expect that you could rely on a random conforming C implementation to both accept your code for the function and compile it such that callers in different translation units could obtain pointers to the same object by calling that function.
paragraph 6.9/5:
An external definition is an external declaration that is also a definition of a function (other than an inline definition) or an object. If an identifier declared with external linkage is used in an expression [...], somewhere in the entire program there shall be exactly one external definition for the identifier [...].
Note here that although an inline definition of a function identifier with external linkage -- such as yours -- provides an external declaration of that identifier, it does not provide an external definition of it. This means that a separate external definition is required somewhere in the program (unless the function goes altogether unused). Moreover, that external definition cannot be in a translation unit that includes the inline definition. This is large among the reasons that extern inline functions are rarely useful in C.
paragraph 6.7.4/7:
For a function with external linkage, the following restrictions apply: [...] If all of the file scope declarations for a function in a translation unit include the inline function specifier without
extern
, then the definition in that translation unit is an inline definition. An inline definition does not provide an external definition for the function, and does not forbid an external definition in another translation unit. An inline definition provides an alternative to an external definition, which a translator may use to implement any call to the function in the same translation unit. It is unspecified whether a call to the function uses the inline definition or the external definition.
In addition to echoing part of 6.9/5, that also warns you that if you do provide an external definition of your function to go with the inline definitions, you cannot be sure which will be used to serve any particular call.
Furthermore, you cannot work around those issues by declaring the function with internal linkage, for although that would allow you to declare a static variable within, each definition of the function would be a different function. Lest there be any doubt, Footnote 140 clarifies that in that case,
Since an inline definition is distinct from the corresponding external definition and from any other corresponding inline definitions in other translation units, all corresponding objects with static storage duration are also distinct in each of the definitions.
(Emphasis added.)
So again, the approach presented in your example cannot be relied upon to work in C, though you might find that in practice, it does work with certain compilers.
If you need this to be a header-only library, then you can achieve it in a portable manner by placing an extra requirement on your users: exactly one translation unit in any program using your header library must define a special macro before including the header. For example:
/* File: sing.h */
#ifndef SING_H
#define SING_H
#ifdef SING_MASTER
int singleton = 0;
#else
extern int singleton;
#endif
#endif
With that, the one translation unit that defines SING_MASTER
before including sing.h
(for the first time) will provide the needed definition of singleton
, whereas all other translation units will have only a declaration. Moreover, the variable will be accessible directly, without either calling a function or dereferencing a pointer.