Not sure if I am doing something wrong (Pandas 1.2.5):
ids = pd.DataFrame(data=range(10), columns=['Id'])
dt = pd.DataFrame(pd.date_range('2021-01-01', '2021-01-10', freq='D'), columns=['Date'])
df = ids.merge(dt, how='cross')
df['Val'] = np.random.randint(1,10, size=len(df))
df.set_index(['Id', 'Date'], inplace=True)
df['Val'].groupby('Id').rolling(window=3).mean()
I would expect the result to include the Date column (otherwise why compute a rolling mean?) but Date is not there:
Id
0 NaN
0 NaN
0 2.333333
0 3.333333
0 3.666667
...
9 5.000000
9 4.000000
9 5.000000
9 5.333333
9 6.000000
Name: Val, Length: 100, dtype: float64
What am I missing?
Also, df['Val'].reset_index('Id').groupby('Id').rolling(window=3).mean()
seems to work somehow but returns Id
as a data column as well as an index column even if as_index=False
is passed in groupby. Very strange!
Id Val
Id Date
0 2021-01-01 NaN NaN
2021-01-02 NaN NaN
2021-01-03 0.0 7.000000
2021-01-04 0.0 6.333333
2021-01-05 0.0 4.666667
... ... ... ...
I think this is a little cleaner,
ids = pd.DataFrame(data=range(10), columns=['Id'])
dt = pd.DataFrame(pd.date_range('2021-01-01', '2021-01-10', freq='D'), columns=['Date'])
df = ids.merge(dt, how='cross')
df['Val'] = np.random.randint(1,10, size=len(df))
df.set_index(['Id'], inplace=True)
df.groupby(['Id']).rolling(window=3,on='Date').mean()#.head(60)
Only change was to not include 'Date' in the index, and roll on='Date'