I have NetCDF files (e.g https://data.ceda.ac.uk/neodc/esacci/lakes/data/lake_products/L3S/v1.0/2019 global domain), and I want to extract the data based on a shapefile boundary ( in this case a Lake here - https://www.sciencebase.gov/catalog/item/530f8a0ee4b0e7e46bd300dd) and then save clipped data as a NetCDF file but retain all the original metadata and variables names within the clipped file. This is what I have done far
library(rgdal)
library(sf)
library(ncdf4)
library(terra)
#Read in the shapefile of Lake
Lake_shape <- readOGR("C:/Users/CEDA/hydro_p_LakeA/hydro_p_A.shp")
# Reading the netcdf file using Terra Package function rast
test <- rast("ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20190705-fv1.0.nc")
# List of some of variables names for orginal dataset
head(names(test))
[1] "water_surface_height_above_reference_datum" "water_surface_height_uncertainty" "lake_surface_water_extent"
[4] "lake_surface_water_extent_uncertainty" "lake_surface_water_temperature" "lswt_uncertainty"
#Clipping data to smaller Lake domain using the crop function in Terra Package
test3 <- crop(test, Lake_shape)
#Listing the some variables names for clipped data
head(names(test3))
[1] "water_surface_height_above_reference_datum" "water_surface_height_uncertainty" "lake_surface_water_extent"
[4] "lake_surface_water_extent_uncertainty" "lake_surface_water_temperature" "lswt_uncertainty"
# Writing the crop dataset as netcdf or Raster Layer using the WriteCDF function
filepath<-"Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0"
fname <- paste0( "C:/Users/CEDA/",filepath,".nc")
rnc <- writeCDF(test3, filename =fname, overwrite=T)”
My main issue here when I read in clipped the netCDF file I don’t seem to be able to keep the names of the data variables of the original NetCDF. They are all being renamed automatically when I am saving the clipped dataset as a new netCDF using the writeCDF function.
#Reading in the new clipped file
LakeA<-rast("Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0.nc")
> head(names(LakeA))
[1] "Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0_1" "Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0_2"
[3] "Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0_3" "Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0_4"
[5] "Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0_5" "Lake_A_ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20020501-fv1.0_6"
So is it possible to clone/copy all the metadata variables from the original NetCDF dataset when clipping to the smaller domain/shapefile in R, then saving as NetCDF? Any guidance on how to do this in R would be really appreciated. (NetCDF and R are all new to me so I am not sure what I am missing or have the in-depth knowledge to sort this).
You have a NetCDF file with many (52) variables (sub-datasets). When you open the file with rast
these become "layers". Alternatively you can open the file with sds
to keep the sub-dataset structure but that does not help you here (and you would need to skip the first two, see below).
library(terra)
f <- "ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20190101-fv1.0.nc"
r <- rast(f)
r
#class : SpatRaster
#dimensions : 21600, 43200, 52 (nrow, ncol, nlyr)
#resolution : 0.008333333, 0.008333333 (x, y)
#extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +no_defs
#sources : ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20190101-fv1.0.nc:water_surface_height_above_reference_datum
ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20190101-fv1.0.nc:water_surface_height_uncertainty
ESACCI-LAKES-L3S-LK_PRODUCTS-MERGED-20190101-fv1.0.nc:lake_surface_water_extent
... and 49 more source(s)
#varnames : water_surface_height_above_reference_datum (water surface height above geoid)
water_surface_height_uncertainty (water surface height uncertainty)
lake_surface_water_extent (Lake Water Extent)
...
#names : water~datum, water~ainty, lake_~xtent, lake_~ainty, lake_~ature, lswt_~ainty, ...
#unit : m, m, km2, km2, Kelvin, Kelvin, ...
#time : 2019-01-01
Note that there are 52 layers and sources (sub-datasets). There are names
head(names(r))
#[1] "water_surface_height_above_reference_datum" "water_surface_height_uncertainty"
#[3] "lake_surface_water_extent" "lake_surface_water_extent_uncertainty"
#[5] "lake_surface_water_temperature" "lswt_uncertainty"
And also "longnames" (they are often much longer than the variable names, not in this case)
head(longnames(r))
# [1] "water surface height above geoid" "water surface height uncertainty" "Lake Water Extent"
# [4] "Water extent uncertainty" "lake surface skin temperature" "Total uncertainty"
You can also open the file with sds
, but you need to skip "lon_bounds" and "lat_bounds" variables (dimensions)
s <- sds(f, 3:52)
Now read a vector data set (shapefile in this case) and crop
lake <- vect("hydro_p_LakeErie.shp")
rc <- crop(r, lake)
rc
#class : SpatRaster
#dimensions : 182, 555, 52 (nrow, ncol, nlyr)
#resolution : 0.008333333, 0.008333333 (x, y)
#extent : -83.475, -78.85, 41.38333, 42.9 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +no_defs
#source : memory
#names : water~datum, water~ainty, lake_~xtent, lake_~ainty, lake_~ature, lswt_~ainty, ...
#min values : NaN, NaN, NaN, NaN, 271.170, 0.283, ...
#max values : NaN, NaN, NaN, NaN, 277.090, 0.622, ...
#time : 2019-01-01
It can be convenient to save this to a GTiff
file like this (or even better to use the filename argument in crop)
gtf <- writeRaster(rc, "test.tif", overwrite=TRUE)
gtf
#class : SpatRaster
#dimensions : 182, 555, 52 (nrow, ncol, nlyr)
#resolution : 0.008333333, 0.008333333 (x, y)
#extent : -83.475, -78.85, 41.38333, 42.9 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +no_defs
#source : test.tif
#names : water~datum, water~ainty, lake_~xtent, lake_~ainty, lake_~ature, lswt_~ainty, ...
#min values : NaN, NaN, NaN, NaN, 271.170, 0.283, ...
#max values : NaN, NaN, NaN, NaN, 277.090, 0.622, ...
What has changed is that the data are now in a file, rather then in memory. And you still have the layer (variable) names.
To write the layers as variables to a NetCDF file you need to create a SpatRasterDataset
. You can do that like this:
x <- as.list(rc)
s <- sds(x)
names(s) <- names(rc)
longnames(s) <- longnames(r)
units(s) <- units(r)
Note the use of longnames(r)
and units(r)
(not rc
). This is because r
has subdatasets (and each has a longname and a unit) while rc
does not.
Now use writeCDF
z <- writeCDF(s, "test.nc", overwrite=TRUE)
rc2 <- rast("test.nc")
rc2
#class : SpatRaster
#dimensions : 182, 555, 52 (nrow, ncol, nlyr)
#resolution : 0.008333333, 0.008333333 (x, y)
#extent : -83.475, -78.85, 41.38333, 42.9 (xmin, xmax, ymin, ymax)
#coord. ref. : +proj=longlat +datum=WGS84 +no_defs
#sources : test.nc:water_surface_height_above_reference_datum
test.nc:water_surface_height_uncertainty
test.nc:lake_surface_water_extent
... and 49 more source(s)
#varnames : water_surface_height_above_reference_datum (water surface height above geoid)
water_surface_height_uncertainty (water surface height uncertainty)
lake_surface_water_extent (Lake Water Extent)
...
#names : water~datum, water~ainty, lake_~xtent, lake_~ainty, lake_~ature, lswt_~ainty, ...
#unit : m, m, km2, km2, Kelvin, Kelvin, ...
#time : 2019-01-01
So it looks like we have a NetCDF with the same structure.
Note that the current CRAN version of terra
drops the time
variable if there is only one time step. The development version (1.3-11) keeps the time dimension, even of there is only one step.
You can install the development version with
install.packages('terra', repos='https://rspatial.r-universe.dev')