I am trying to create a data pipeline where I request data from a REST API. The output is a nested json file which is great. I want to read the json file into a pyspark dataframe. This works fine when I save the file locally and use the following code:
from pyspark.sql import *
from pyspark.sql.functions import *
spark = SparkSession\
.builder\
.appName("jsontest")\
.getOrCreate()
raw_df = spark.read.json(r"my_json_path", multiLine='true')
But when I want to make a pyspark dataframe directly after I have made the API request I get the following error:
I use the following code for rest api call and conversion to pyspark dataframe:
apiCallHeaders = {'Authorization': 'Bearer ' + bearer_token}
apiCallResponse = requests.get(data_url, headers=apiCallHeaders, verify=True)
json_rdd = spark.sparkContext.parallelize(apiCallResponse.text)
raw_df = spark.read.json(json_rdd)
The following is some of the response output
{"networks":[{"href":"/v2/networks/velobike-moscow","id":"velobike-moscow","name":"Velobike"},{"href":"/v2/networks/bycyklen","id":"bycyklen","name":"Bycyklen"},{"href":"/v2/networks/nu-connect","id":"nu-connect","name":"Nu-Connect"},{"href":"/v2/networks/baerum-bysykkel","id":"baerum-bysykkel","name":"Bysykkel"},{"href":"/v2/networks/bysykkelen","id":"bysykkelen","name":"Bysykkelen"},{"href":"/v2/networks/onroll-a-rua","id":"onroll-a-rua","name":"Onroll"},{"href":"/v2/networks/onroll-albacete","id":"onroll-albacete","name":"Onroll"},{"href":"/v2/networks/onroll-alhama-de-murcia","id":"onroll-alhama-de-murcia","name":"Onroll"},{"href":"/v2/networks/onroll-almunecar","id":"onroll-almunecar","name":"Onroll"},{"href":"/v2/networks/onroll-antequera","id":"onroll-antequera","name":"Onroll"},{"href":"/v2/networks/onroll-aranda-de-duero","id":"onroll-aranda-de-duero","name":"Onroll"}
I hope my problem make sense and someone can be of help.
Thanks in advance!
Following this answer you might add these lines:
import os
import sys
os.environ['PYSPARK_PYTHON'] = sys.executable
os.environ['PYSPARK_DRIVER_PYTHON'] = sys.executable
And to run your code must add [ ]
here:
rdd = spark.sparkContext.parallelize([apiCallResponse.text])
See an example:
import requests
response = requests.get('http://api.citybik.es/v2/networks?fields=id,name,href')
rdd = spark.sparkContext.parallelize([response.text])
df = spark.read.json(rdd)
df.printSchema()
# root
# |-- networks: array (nullable = true)
# | |-- element: struct (containsNull = true)
# | | |-- href: string (nullable = true)
# | | |-- id: string (nullable = true)
# | | |-- name: string (nullable = true)
(df
.selectExpr('inline(networks)')
.show(n=5, truncate=False))
# +----------------------------+---------------+----------+
# |href |id |name |
# +----------------------------+---------------+----------+
# |/v2/networks/velobike-moscow|velobike-moscow|Velobike |
# |/v2/networks/bycyklen |bycyklen |Bycyklen |
# |/v2/networks/nu-connect |nu-connect |Nu-Connect|
# |/v2/networks/baerum-bysykkel|baerum-bysykkel|Bysykkel |
# |/v2/networks/bysykkelen |bysykkelen |Bysykkelen|
# +----------------------------+---------------+----------+