I'm trying to find out if DQN can solve the shortest path algorithm
so I have this Dataframe which contains a source
which has nodes id
,end
which represents the destination and also has nodes id
, and the weights which represent the distance of the edge and then I converted the data frame into a graph theory as following
DataFrame
source end weight
0 688615041 208456626 15.653688122127072
1 688615041 1799221665 10.092266065922756
2 1799221657 1799221660 8.673942902872051
3 1799221660 1799221665 15.282152665774992
4 1799221660 2003461246 25.85307821157314
5 1799221660 299832604 75.99884525624508
6 299832606 2003461227 4.510148061854331
7 299832606 2003461246 10.954119220974723
8 299832606 2364408910 4.903114362426424
9 1731824802 2003461235 6.812335798968233
10 1799221677 208456626 8.308567154008992
11 208456626 2003461246 14.56512909988425
12 208456626 1250468692 16.416527267975034
13 1011881546 1250468696 12.209773608913697
14 1011881546 2003461246 7.477102764665149
15 2364408910 1130166767 9.780352545373274
16 2364408910 2003461246 6.660771089602594
17 2364408910 2003461237 3.125301826317477
18 2364408911 2003461240 3.836966849565568
19 2364408911 2003461246 6.137847950353395
20 2364408911 2003461247 7.399469477211698
21 2364408911 2003461237 3.90876793066916
22 1250468692 1250468696 8.474825189804282
23 1250468701 2003461247 4.539111170687284
24 2003461235 2003461246 12.400601105777394
25 2003461246 2003461247 12.437602668573737
and the graph looks like this
pos = nx.spring_layout(g)
edge_labels = nx.get_edge_attributes(g, 'weight')
nx.draw(g, pos, node_size=100)
nx.draw_networkx_edge_labels(g, pos, edge_labels, font_size=8)
nx.draw_networkx_labels(g, pos, font_size=10)
plt.title("Syntethic representation of the City")
plt.show()
print('Total number of Nodes: '+str(len(g.nodes)))
Now I used DQN in a fixed state from node number 1130166767 as a start to node number 1731824802 as a goal.
this is the whole code of mine
class Network(nn.Module):
def __init__(self,input_dim,n_action):
super(Network,self).__init__()
self.f1=nn.Linear(input_dim,128)
self.f2=nn.Linear(128,64)
self.f3=nn.Linear(64,32)
self.f4=nn.Linear(32,n_action)
#self.optimizer=optim.Adam(self.parameters(),lr=lr)
#self.loss=nn.MSELoss()
self.device=T.device('cuda' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self,x):
x=F.relu(self.f1(x))
x=F.relu(self.f2(x))
x=F.relu(self.f3(x))
x=self.f4(x)
return x
def act(self,obs):
#state=T.tensor(obs).to(device)
state=obs.to(self.device)
actions=self.forward(state)
action=T.argmax(actions).item()
return action
device=T.device('cuda' if T.cuda.is_available() else 'cpu')
print(device)
num_states = len(g.nodes)*1
### if we need to train a specific set of nodes for ex 10 we *10
num_actions = len(g.nodes)
print("Expected number of States are: "+str(num_states))
print("Expected number of action are: "+str(num_actions))
#num_action*2=when we would like to convert the state into onehotvector we need to concatinate the two vector 22+22
online=Network(num_actions*2,num_actions)
target=Network(num_actions*2,num_actions)
target.load_state_dict(online.state_dict())
optimizer=T.optim.Adam(online.parameters(),lr=5e-4)
#create a dictionary that have encoded index for each node
#to solve this isssu
#reset()=476562122273
#number of state < 476562122273
enc_node={}
dec_node={}
for index,nd in enumerate(g.nodes):
enc_node[nd]=index
dec_node[index]=nd
def wayenc(current_node,new_node,type=1):
#encoded
if type==1: #distance
if new_node in g[current_node]:
rw=g[current_node][new_node]['weight']*-1
return rw,True
rw=-5000
return rw,False
def rw_function(current,action):
#current_node
#new_node
beta=1 #between 1 and 0
current=dec_node[current]
new_node=dec_node[action]
rw0,link=wayenc(current,new_node)
rw1=0
frw=rw0*beta+(1-beta)*rw1
return frw,link
def state_enc(dst, end,n=len(g.nodes)):
return dst+n*end
def state_dec(state,n=len(g.nodes)):
dst = state%n
end = (state-dst)/n
return dst, int(end)
def step(state,action):
done=False
current_node , end = state_dec(state)
new_state = state_enc(action,end)
rw,link=rw_function(current_node,action)
if not link:
new_state = state
return new_state,rw,False
elif action == end:
rw = 10000 #500*12
done=True
return new_state,rw,done
def reset():
state=state_enc(enc_node[1130166767],enc_node[1731824802])
return state
def state_to_vector(current_node,end_node):
n=len(g.nodes)
source_state_zeros=[0.]*n
source_state_zeros[current_node]=1
end_state_zeros=[0.]*n
end_state_zeros[end_node]=1.
vector=source_state_zeros+end_state_zeros
return vector
#return a list of list converted from state to vectors
def list_of_vecotrs(new_obses_t):
list_new_obss_t=new_obses_t.tolist()
#convert to integer
list_new_obss_t=[int(v) for v in list_new_obss_t]
vector_list=[]
for state in list_new_obss_t:
s,f=state_dec(state)
vector=state_to_vector(s,f)
vector_list.append(vector)
return vector_list
#fill the replay buffer
#replay_buffer=[]
rew_buffer=[0]
penalties=[]
episode_reward=0.0
batch_size=num_actions*2
buffer_size=100000
min_replay_size=int(buffer_size*0.20)
target_update_freq=1000
flag=0
action_list=np.arange(0,len(g.nodes)).tolist()
replay_buffer=deque(maxlen=buffer_size)
#populate the experience network
obs=reset()
#obs,end=state_dec(start,len(g.nodes))
for _ in tqdm(range(min_replay_size)):
action=np.random.choice(action_list)
new_obs,rew,done=step(obs,action)
transition=(obs,action,rew,done,new_obs)
replay_buffer.append(transition)
obs=new_obs
if done:
obs=reset()
#main training loop
obs=reset()
episodes=100000
start=1
end=0.1
decay=episodes
gamma=0.99
epsilon=0.5
gamma_list=[]
mean_reward=[]
done_location=[]
loss_list=[]
number_of_episodes=[]
stat_dict={'episodes':[],'epsilon':[],'explore_exploit':[],'time':[]}
for i in tqdm(range(episodes)):
itr=0
#epsilon=np.interp(i,[0,decay],[start,end])
#gamma=np.interp(i,[0,decay],[start,end])
epsilon=np.exp(-i/(episodes/3))
rnd_sample=random.random()
stat_dict['episodes'].append(i)
stat_dict['epsilon'].append(epsilon)
#choose an action
if rnd_sample <=epsilon:
action=np.random.choice(action_list)
stat_dict['explore_exploit'].append('explore')
else:
source,end=state_dec(obs)
v_obs=state_to_vector(source,end)
t_obs=T.tensor(v_obs)
action=online.act(t_obs)
stat_dict['explore_exploit'].append('exploit')
#fill transition and append to replay buffer
new_obs,rew,done=step(obs,action)
transition=(obs,action,rew,done,new_obs)
replay_buffer.append(transition)
obs=new_obs
episode_reward+=rew
if done:
obs=reset()
rew_buffer.append(episode_reward)
episode_reward=0.0
done_location.append(i)
#start gradient step
transitions=random.sample(replay_buffer,batch_size)
obses=np.asarray([t[0] for t in transitions])
actions=np.asarray([t[1] for t in transitions])
rews=np.asarray([t[2] for t in transitions])
dones=np.asarray([t[3] for t in transitions])
new_obses=np.asarray([t[4] for t in transitions])
obses_t=T.as_tensor(obses,dtype=T.float32).to(device)
actions_t=T.as_tensor(actions,dtype=T.int64).to(device).unsqueeze(-1)
rews_t=T.as_tensor(rews,dtype=T.float32).to(device)
dones_t=T.as_tensor(dones,dtype=T.float32).to(device)
new_obses_t=T.as_tensor(new_obses,dtype=T.float32).to(device)
list_new_obses_t=T.tensor(list_of_vecotrs(new_obses_t)).to(device)
target_q_values=target(list_new_obses_t)##
max_target_q_values=target_q_values.max(dim=1,keepdim=False)[0]
targets=rews_t+gamma*(1-dones_t)*max_target_q_values
list_obses_t=T.tensor(list_of_vecotrs(obses_t)).to(device)
q_values=online(list_obses_t)
action_q_values=T.gather(input=q_values,dim=1,index=actions_t)
#warning UserWarning: Using a target size (torch.Size([24, 24])) that is different to the input size (torch.Size([24, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.
targets=targets.unsqueeze(-1)
loss=nn.functional.mse_loss(action_q_values,targets)
#loss=rmsle(action_q_values,targets)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
#plot
mean_reward.append(np.mean(rew_buffer))
number_of_episodes.append(i)
gamma_list.append(gamma)
dec = {'number_of_episodes':number_of_episodes,'mean_reward':mean_reward,'gamma':gamma_list}
#clear_output(wait=True)
#sns.lineplot(data=dec, x="number_of_episodes", y="mean_reward")
#plt.show()
if i % target_update_freq==0:
target.load_state_dict(online.state_dict())
if i % 1000 ==0:
print('step',i,'avg rew',round(np.mean(rew_buffer),2))
pass
now if you can see from thephotos
nither the rewards are increasing or the loss is decreasing, I tried the following
increasing and decreasing the learning rate
changing target_update_freq from 100 1000 1000
I tried changing the state representation from Onehotvector to [state, end] and sent it as pair.
i tried to change the loss function from mse_loss,smooth_l1,... etc
i tried to increase the number of episodes
adding another layer to NN network 7.changing how the decay of epsilon works linear ,exponential
most of these solutions are from questions on Stacked, but nothing works for me
How can I improve the performance? or in another ward? How can I increase the rewards?
It seems your problem needs just parameters tunning only
class Network(nn.Module):
def __init__(self,input_dim,n_action):
super(Network,self).__init__()
self.f1=nn.Linear(input_dim,128)
self.f2=nn.Linear(128,64)
self.f3=nn.Linear(64,32)
self.f4=nn.Linear(32,n_action)
#self.optimizer=optim.Adam(self.parameters(),lr=lr)
#self.loss=nn.MSELoss()
self.device=T.device('cuda' if T.cuda.is_available() else 'cpu')
self.to(self.device)
def forward(self,x):
x=F.relu(self.f1(x))
x=F.relu(self.f2(x))
x=F.relu(self.f3(x))
x=self.f4(x)
return x
def act(self,obs):
#state=T.tensor(obs).to(device)
state=obs.to(self.device)
actions=self.forward(state)
action=T.argmax(actions).item()
return action
device=T.device('cuda' if T.cuda.is_available() else 'cpu')
print(device)
num_states = len(g.nodes)**2
num_actions = len(g.nodes)
online=Network(num_actions*2,num_actions)
target=Network(num_actions*2,num_actions)
target.load_state_dict(online.state_dict())
optimizer=T.optim.Adam(online.parameters(),lr=1e-2)
enc_node={}
dec_node={}
for index,nd in enumerate(g.nodes):
enc_node[nd]=index
dec_node[index]=nd
def wayenc(current_node,new_node,type=1):
#encoded
if type==1: #distance
if new_node in g[current_node]:
rw=g[current_node][new_node]['weight']*-1
return rw,True
rw=-1000
return rw,False
def rw_function(current,action):
beta=1
current=dec_node[current]
new_node=dec_node[action]
rw0,link=wayenc(current,new_node)
rw1=0
frw=rw0*beta+(1-beta)*rw1
return frw,link
def state_enc(dst, end,n=len(g.nodes)):
return dst+n*end
def state_dec(state,n=len(g.nodes)):
dst = state%n
end = (state-dst)/n
return dst, int(end)
def step(state,action):
done=False
current_node , end = state_dec(state)
new_state = state_enc(action,end)
rw,link=rw_function(current_node,action)
if not link:
new_state = state
return new_state,rw,False
elif action == end:
rw = 10000
done=True
return new_state,rw,done
def reset():
state=state_enc(enc_node[1130166767],enc_node[1731824802])
return state
def state_to_vector(current_node,end_node):
n=len(g.nodes)
source_state_zeros=[0.]*n
source_state_zeros[current_node]=1
end_state_zeros=[0.]*n
end_state_zeros[end_node]=1.
vector=source_state_zeros+end_state_zeros
return vector
#return a list of list converted from state to vectors
def list_of_vecotrs(new_obses_t):
list_new_obss_t=new_obses_t.tolist()
#convert to integer
list_new_obss_t=[int(v) for v in list_new_obss_t]
vector_list=[]
for state in list_new_obss_t:
s,f=state_dec(state)
vector=state_to_vector(s,f)
vector_list.append(vector)
return vector_list
#replay_buffer=[]
rew_buffer=[0]
penalties=[]
episode_reward=0.0
#batch_size=num_actions*2
batch_size=32
buffer_size=50000
min_replay_size=int(buffer_size*0.25)
target_update_freq=1000
flag=0
action_list=np.arange(0,len(g.nodes)).tolist()
replay_buffer=deque(maxlen=min_replay_size)
#populate the experience network
obs=reset()
#obs,end=state_dec(start,len(g.nodes))
for _ in tqdm(range(min_replay_size)):
action=np.random.choice(action_list)
new_obs,rew,done=step(obs,action)
transition=(obs,action,rew,done,new_obs)
replay_buffer.append(transition)
obs=new_obs
if done:
obs=reset()
#main training loop
obs=reset()
episodes=70000
start=1
end=0.1
decay=episodes
gamma=0.99
epsilon=0.5
gamma_list=[]
mean_reward=[]
done_location=[]
loss_list=[]
number_of_episodes=[]
stat_dict={'episodes':[],'epsilon':[],'explore_exploit':[],'time':[]}
for i in tqdm(range(episodes)):
itr=0
epsilon=np.exp(-i/(episodes/2))
rnd_sample=random.random()
stat_dict['episodes'].append(i)
stat_dict['epsilon'].append(epsilon)
if rnd_sample <=epsilon:
action=np.random.choice(action_list)
stat_dict['explore_exploit'].append('explore')
else:
source,end=state_dec(obs)
v_obs=state_to_vector(source,end)
t_obs=T.tensor([v_obs])
action=online.act(t_obs)
stat_dict['explore_exploit'].append('exploit')
new_obs,rew,done=step(obs,action)
transition=(obs,action,rew,done,new_obs)
replay_buffer.append(transition)
obs=new_obs
episode_reward+=rew
if done:
obs=reset()
rew_buffer.append(episode_reward)
episode_reward=0.0
done_location.append(i)
batch_size=32
transitions=random.sample(replay_buffer,batch_size)
obses=np.asarray([t[0] for t in transitions])
actions=np.asarray([t[1] for t in transitions])
rews=np.asarray([t[2] for t in transitions])
dones=np.asarray([t[3] for t in transitions])
new_obses=np.asarray([t[4] for t in transitions])
obses_t=T.as_tensor(obses,dtype=T.float32).to(device)
actions_t=T.as_tensor(actions,dtype=T.int64).to(device).unsqueeze(-1)
rews_t=T.as_tensor(rews,dtype=T.float32).to(device)
dones_t=T.as_tensor(dones,dtype=T.float32).to(device)
new_obses_t=T.as_tensor(new_obses,dtype=T.float32).to(device)
list_new_obses_t=T.tensor(list_of_vecotrs(new_obses_t)).to(device)
target_q_values=target(list_new_obses_t)##
#target_q_values=target(obses_t)
max_target_q_values=target_q_values.max(dim=1,keepdim=False)[0]
targets=rews_t+gamma*(1-dones_t)*max_target_q_values
targets=targets.unsqueeze(-1)
list_obses_t=T.tensor(list_of_vecotrs(obses_t)).to(device)
q_values=online(list_obses_t)
#q_values=online(obses_t)
action_q_values=T.gather(input=q_values,dim=1,index=actions_t)
loss=nn.functional.mse_loss(action_q_values,targets)
loss_list.append(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
mean_reward.append(np.mean(rew_buffer))
number_of_episodes.append(i)
gamma_list.append(gamma)
dec = {'number_of_episodes':number_of_episodes,'mean_reward':mean_reward,'gamma':gamma_list}
if i % target_update_freq==0:
target.load_state_dict(online.state_dict())
if i % 1000 ==0:
print('step',i,'avg rew',round(np.mean(rew_buffer),2))
pass
if i==5000:
pass
I did run this script and it gave me a good performance changing the learning rate helped a lot