pythontensorflowscikit-learndeep-learningktrain

how to use cross-validation with ktrain?


I am using the ktrain package to perform multiclass text classification. The example on the official ktrain website works great (https://github.com/amaiya/ktrain)

categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med']
from sklearn.datasets import fetch_20newsgroups
train_b = fetch_20newsgroups(subset='train', categories=categories, shuffle=True)
test_b = fetch_20newsgroups(subset='test',categories=categories, shuffle=True)
(x_train, y_train) = (train_b.data, train_b.target)
(x_test, y_test) = (test_b.data, test_b.target)

# build, train, and validate model (Transformer is wrapper around transformers library)
import ktrain
from ktrain import text
MODEL_NAME = 'distilbert-base-uncased'
t = text.Transformer(MODEL_NAME, maxlen=500, class_names=train_b.target_names)
trn = t.preprocess_train(x_train, y_train)
val = t.preprocess_test(x_test, y_test)
model = t.get_classifier()
learner = ktrain.get_learner(model, train_data=trn, val_data=val, batch_size=6)
learner.fit_onecycle(5e-5, 4)
learner.validate(class_names=t.get_classes())

Accuracy is pretty high.

However, I am comparing this model with other models trained with scikit-learn and, in particular, the other models' accuracy is assessed using cross validation

cross_val_score(sgd_clf, X_train, y_train, cv=3, scoring="accuracy")

How can I adapt the code above to make sure the transformer model used with ktrain is also evaluated with the same cross validation methodology?


Solution

  • You can try something like this:

    from ktrain import text
    import ktrain
    import pandas as pd
    from sklearn.model_selection import train_test_split,KFold
    from sklearn.metrics import accuracy_score
    from sklearn.datasets import fetch_20newsgroups
    
    # load text data
    categories = ['alt.atheism', 'soc.religion.christian','comp.graphics', 'sci.med']
    train_b = fetch_20newsgroups(subset='train', categories=categories, shuffle=True)
    test_b = fetch_20newsgroups(subset='test',categories=categories, shuffle=True)
    (x_train, y_train) = (train_b.data, train_b.target)
    (x_test, y_test) = (test_b.data, test_b.target)
    df = pd.DataFrame({'text':x_train, 'target': [train_b.target_names[y] for y in y_train]})
    
    # CV with transformers
    N_FOLDS = 2
    EPOCHS = 3
    LR = 5e-5
    def transformer_cv(MODEL_NAME):
        predictions,accs=[],[]
        data = df[['text', 'target']]
        for train_index, val_index in KFold(N_FOLDS).split(data):
            preproc  = text.Transformer(MODEL_NAME, maxlen=500)
            train,val=data.iloc[train_index],data.iloc[val_index]
            x_train=train.text.values
            x_val=val.text.values
    
            y_train=train.target.values
            y_val=val.target.values
    
            trn = preproc.preprocess_train(x_train, y_train)
            model = preproc.get_classifier()
            learner = ktrain.get_learner(model, train_data=trn, batch_size=16)
            learner.fit_onecycle(LR, EPOCHS)
            predictor = ktrain.get_predictor(learner.model, preproc)
            pred=predictor.predict(x_val)
            acc=accuracy_score(y_val,pred)
            print('acc',acc)
            accs.append(acc)
        return accs
    print( transformer_cv('distilbert-base-uncased') )
    
    # output:
    # [0.9627989371124889, 0.9689716312056738]
    

    REFERENCE: See this Kaggle notebook for a regression example.