I have a maze organized in a grid. Each cell of the grid stores the information about the walls to its right and bottom neighboring cell. The player is an object of a certain size whose bounding box is known. I want to move the player smoothly through the maze with the walls preventing them from going through.
Minimal and reproducible example:
import pygame, random
class Maze:
def __init__(self, rows = 9, columns = 9):
self.size = (columns, rows)
self.walls = [[[True, True] for _ in range(self.size[1])] for __ in range(self.size[0])]
visited = [[False for _ in range(self.size[1])] for __ in range(self.size[0])]
i, j = (self.size[0]+1) // 2, (self.size[1]+1) // 2
visited[i][j] = True
stack = [(i, j)]
while stack:
current = stack.pop()
i, j = current
nl = [n for n in [(i-1, j), (i+1, j), (i, j-1), (i, j+1)]
if 0 <= n[0] < self.size[0] and 0 <= n[1] < self.size[1] and not visited[n[0]][n[1]]]
if nl:
stack.insert(0, current)
next = random.choice(nl)
self.walls[min(next[0], current[0])][min(next[1], current[1])][abs(next[1]-current[1])] = False
visited[next[0]][next[1]] = True
stack.insert(0, next)
def draw_maze(surf, maze, x, y, l, color, width):
lines = [((x, y), (x + l * len(maze.walls), y)), ((x, y), (x, y + l * len(maze.walls[0])))]
for i, row in enumerate(maze.walls):
for j, cell in enumerate(row):
if cell[0]: lines += [((x + i*l + l, y + j*l), (x + i*l + l, y + j*l + l))]
if cell[1]: lines += [((x + i*l, y + j*l + l), (x + i*l + l, y + j*l + l))]
for line in lines:
pygame.draw.line(surf, color, *line, width)
pygame.init()
window = pygame.display.set_mode((400, 400))
clock = pygame.time.Clock()
maze = Maze()
player_rect = pygame.Rect(190, 190, 20, 20)
run = True
while run:
clock.tick(100)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
keys = pygame.key.get_pressed()
player_rect.x += (keys[pygame.K_RIGHT] - keys[pygame.K_LEFT]) * 3
player_rect.y += (keys[pygame.K_DOWN] - keys[pygame.K_UP]) * 3
window.fill(0)
draw_maze(window, maze, 20, 20, 40, (196, 196, 196), 3)
pygame.draw.circle(window, (255, 255, 0), player_rect.center, player_rect.width//2)
pygame.display.flip()
pygame.quit()
exit()
Implement simple logic that tests if there is a wall in the player's path when the player moves. Discard the movement when a collision with a wall is detected.
Add methods to the Maze
class that check for a wall between a cell and its neighboring cell:
class Maze:
# [...]
def wall_left(self, i, j):
return i < 1 or self.walls[i-1][j][0]
def wall_right(self, i, j):
return i >= self.size[0] or self.walls[i][j][0]
def wall_top(self, i, j):
return j < 1 or self.walls[i][j-1][1]
def wall_bottom(self, i, j):
return j >= self.size[0] or self.walls[i][j][1]
Calculate the rows and columns of the corner points of the player's bounding box.
i0 = (player_rect.left - maze_pos[0]) // cell_size
i1 = (player_rect.right - maze_pos[0]) // cell_size
j0 = (player_rect.top - maze_pos[1]) // cell_size
j1 = (player_rect.bottom - maze_pos[1]) // cell_size
As the player moves, test to see if the player is entering a new cell. Use the new methods in the Maze
class to test whether there is a wall in the player's path. Skip the movement if the path is blocked by a wall:
keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT]:
new_rect = player_rect.move(-3, 0)
ni = (new_rect.left - maze_pos[0]) // cell_size
if i0 == ni or not (maze.wall_left(i0, j0) or maze.wall_left(i0, j1) or (j0 != j1 and maze.wall_bottom(ni, j0))):
player_rect = new_rect
if keys[pygame.K_RIGHT]:
new_rect = player_rect.move(3, 0)
ni = (new_rect.right - maze_pos[0]) // cell_size
if i1 == ni or not (maze.wall_right(i1, j0) or maze.wall_right(i1, j1) or (j0 != j1 and maze.wall_bottom(ni, j0))):
player_rect = new_rect
keys = pygame.key.get_pressed()
if keys[pygame.K_UP]:
new_rect = player_rect.move(0, -3)
nj = (new_rect.top - maze_pos[1]) // cell_size
if j0 == nj or not (maze.wall_top(i0, j0) or maze.wall_top(i1, j0) or (i0 != i1 and maze.wall_right(i0, nj))):
player_rect = new_rect
if keys[pygame.K_DOWN]:
new_rect = player_rect.move(0, 3)
nj = (new_rect.bottom - maze_pos[1]) // cell_size
if j1 == nj or not (maze.wall_bottom(i0, j1) or maze.wall_bottom(i1, j1) or (i0 != i1 and maze.wall_right(i0, nj))):
player_rect = new_rect
See also Maze collision detection
Minimal example: repl.it/@Rabbid76/PyGame-Maze-CollisionLogic
import pygame, random
class Maze:
def __init__(self, rows = 9, columns = 9):
self.size = (columns, rows)
self.walls = [[[True, True] for _ in range(self.size[1])] for __ in range(self.size[0])]
visited = [[False for _ in range(self.size[1])] for __ in range(self.size[0])]
i, j = (self.size[0]+1) // 2, (self.size[1]+1) // 2
visited[i][j] = True
stack = [(i, j)]
while stack:
current = stack.pop()
i, j = current
nl = [n for n in [(i-1, j), (i+1, j), (i, j-1), (i, j+1)]
if 0 <= n[0] < self.size[0] and 0 <= n[1] < self.size[1] and not visited[n[0]][n[1]]]
if nl:
stack.insert(0, current)
next = random.choice(nl)
self.walls[min(next[0], current[0])][min(next[1], current[1])][abs(next[1]-current[1])] = False
visited[next[0]][next[1]] = True
stack.insert(0, next)
def wall_left(self, i, j):
return i < 1 or self.walls[i-1][j][0]
def wall_right(self, i, j):
return i >= self.size[0] or self.walls[i][j][0]
def wall_top(self, i, j):
return j < 1 or self.walls[i][j-1][1]
def wall_bottom(self, i, j):
return j >= self.size[0] or self.walls[i][j][1]
def draw_maze(surf, maze, x, y, l, color, width):
lines = [((x, y), (x + l * len(maze.walls), y)), ((x, y), (x, y + l * len(maze.walls[0])))]
for i, row in enumerate(maze.walls):
for j, cell in enumerate(row):
if cell[0]: lines += [((x + i*l + l, y + j*l), (x + i*l + l, y + j*l + l))]
if cell[1]: lines += [((x + i*l, y + j*l + l), (x + i*l + l, y + j*l + l))]
for line in lines:
pygame.draw.line(surf, color, *line, width)
pygame.init()
window = pygame.display.set_mode((400, 400))
clock = pygame.time.Clock()
maze = Maze()
player_rect = pygame.Rect(190, 190, 20, 20)
run = True
while run:
clock.tick(100)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
maze_pos = 20, 20
cell_size = 40
i0 = (player_rect.left - maze_pos[0]) // cell_size
i1 = (player_rect.right - maze_pos[0]) // cell_size
j0 = (player_rect.top - maze_pos[1]) // cell_size
j1 = (player_rect.bottom - maze_pos[1]) // cell_size
keys = pygame.key.get_pressed()
if keys[pygame.K_LEFT]:
new_rect = player_rect.move(-3, 0)
ni = (new_rect.left - maze_pos[0]) // cell_size
if i0 == ni or not (maze.wall_left(i0, j0) or maze.wall_left(i0, j1) or (j0 != j1 and maze.wall_bottom(ni, j0))):
player_rect = new_rect
if keys[pygame.K_RIGHT]:
new_rect = player_rect.move(3, 0)
ni = (new_rect.right - maze_pos[0]) // cell_size
if i1 == ni or not (maze.wall_right(i1, j0) or maze.wall_right(i1, j1) or (j0 != j1 and maze.wall_bottom(ni, j0))):
player_rect = new_rect
keys = pygame.key.get_pressed()
if keys[pygame.K_UP]:
new_rect = player_rect.move(0, -3)
nj = (new_rect.top - maze_pos[1]) // cell_size
if j0 == nj or not (maze.wall_top(i0, j0) or maze.wall_top(i1, j0) or (i0 != i1 and maze.wall_right(i0, nj))):
player_rect = new_rect
if keys[pygame.K_DOWN]:
new_rect = player_rect.move(0, 3)
nj = (new_rect.bottom - maze_pos[1]) // cell_size
if j1 == nj or not (maze.wall_bottom(i0, j1) or maze.wall_bottom(i1, j1) or (i0 != i1 and maze.wall_right(i0, nj))):
player_rect = new_rect
window.fill(0)
draw_maze(window, maze, 20, 20, cell_size, (196, 196, 196), 3)
pygame.draw.circle(window, (255, 255, 0), player_rect.center, player_rect.width//2)
pygame.display.flip()
pygame.quit()
exit()