pythonmachine-learningscikit-learnprettytabletabular-form

Printing data in Tabular Form in Python


I'm trying to look for accuarcy/PRecision/Reacll etc... So i used this code and it works verry well for me but actually i want to change the output form as tabular My output:

    Column 2 acc: 1.0
    Column 2 p: 1.0
    Column 2 r: 1.0
    Column 1 acc: 1.0
    Column 1 p: 1.0
    Column 1 r: 1.0
    Column 3 acc: 1.0
    Column 3 p: 1.0
    Column 3 r: 1.0

The output that i want:

+----------+-----------+-------+---------+
|  Feature | Precision |Recall | Accuracy|
+----------+-----------+-------+---------+
|    1     |    1.0   |  1.0   |  1.0    |
|    2     |    1.0   |  1.0   |  1.0    |
|    3     |    1.0   |  1.0   |  1.0    |
+----------+----------+--------+---------+

My code:

def calc_acc(original, predect1):
    common_columns = list(set(original.columns).intersection(predect1.columns))

    avg_a = 0.0
    avg_p = 0.0
    avg_r = 0.0
    for c in common_columns:
        c_acc = accuracy_score(original[c], predect1[c])
        p = precision_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))
        r = recall_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))
        print(f'Column {c} acc: {c_acc}')
        print(f'Column {c} p: {p}')
        print(f'Column {c} r: {r}')
        avg_a += c_acc/len(common_columns)
        avg_p += p/len(common_columns)
        avg_r += r/len(common_columns)

NB: c is the column


Solution

  • use this code to draw PrettyTable:

    from prettytable import PrettyTable
    pt = PrettyTable()
    pt.field_names = ['Feature','Precision','Recall','Accuracy']
    pt.add_row([c,p,r,c_acc])
    

    finally your desire code and output like this:

    from sklearn.metrics import accuracy_score
    from sklearn.metrics import precision_score, recall_score
    from prettytable import PrettyTable
     
    
    def calc_acc(original, predect1):
        common_columns = list(set(original.columns).intersection(predect1.columns))
    
        avg_a = 0.0
        avg_p = 0.0
        avg_r = 0.0
        
        pt = PrettyTable()
        pt.field_names = ['Feature','Precision','Recall','Accuracy']
    
        for c in common_columns:
            c_acc = accuracy_score(original[c], predect1[c])
            p = precision_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))
            r = recall_score(original[c], predect1[c], average='macro', labels=np.unique(predect1[c]))
    
            pt.add_row([c,p,r,c_acc])
            
            avg_a += c_acc/len(common_columns)
            avg_p += p/len(common_columns)
            avg_r += r/len(common_columns)
            
        print(pt)
            
    pre = [[1, 1, 3], [2, 3, 4]]
    pre = pd.DataFrame(pre, columns= ['1', '2', '3'])
    
    calc_acc(pre, pre)
    

    output:

    enter image description here