I have the following plot:
Each of the three lines belongs to a different x-axis scale. For example, the x-axis of the Fully Connected line should range between 0.001 and 0.02; the x-axis of the kNN line should range between 2 and 40. I want to eliminate the current x-axis and have three x-axes, one below the other, each scaled and colored differently.
Here is my code:
## Plot means
x_full = np.linspace(0.001, 0.02, 20)
x_enn = np.linspace(0.05, 1.95, 20)
x_knn = np.linspace(2, 40, 20)
x = np.arange(len(x_full))
fig, ax = plt.subplots(1, 2, figsize=(13.2, 4))
## Set color
ax[0].set_prop_cycle(color=color_list)
ax[1].set_prop_cycle(color=color_list)
## Plot means
ax[0].plot(x, two_moons_acc_mean['full'], label='Fully Connected')
ax[0].plot(x[1:], two_moons_acc_mean['enn'][0.1:], label=r'$\epsilon$-N')
ax[0].plot(x, two_moons_acc_mean['knn'], label=r'$k$NN')
ax[1].plot(x, two_moons_acc_mean['full'], label='Fully Connected')
ax[1].plot(x[1:], two_moons_acc_mean['enn'][0.1:], label=r'$\epsilon$-N')
ax[1].plot(x, two_moons_acc_mean['knn'], label=r'$k$NN')
## Plot standard deviations
ax[0].fill_between(
x,
two_moons_acc_mean['full'] - two_moons_acc_std['full'],
two_moons_acc_mean['full'] + two_moons_acc_std['full'],
alpha=0.2
)
ax[0].fill_between(
x[1:],
two_moons_acc_mean['enn'][0.1:] - two_moons_acc_std['enn'][0.1:],
two_moons_acc_mean['enn'][0.1:] + two_moons_acc_std['enn'][0.1:],
alpha=0.2
)
ax[0].fill_between(
x,
two_moons_acc_mean['knn'] - two_moons_acc_std['knn'],
two_moons_acc_mean['knn'] + two_moons_acc_std['knn'],
alpha=0.2
)
ax[1].fill_between(
x,
two_moons_acc_mean['full'] - two_moons_acc_std['full'],
two_moons_acc_mean['full'] + two_moons_acc_std['full'],
alpha=0.2
)
ax[1].fill_between(
x[1:],
two_moons_acc_mean['enn'][0.1:] - two_moons_acc_std['enn'][0.1:],
two_moons_acc_mean['enn'][0.1:] + two_moons_acc_std['enn'][0.1:],
alpha=0.2
)
ax[1].fill_between(
x,
two_moons_acc_mean['knn'] - two_moons_acc_std['knn'],
two_moons_acc_mean['knn'] + two_moons_acc_std['knn'],
alpha=0.2
)
## Loglog plot
ax[1].set_xscale('log')
ax[1].set_yscale('log')
## Add Legend
ax[0].legend(loc='lower left', ncol=3, frameon=False)
ax[1].legend(loc='lower left', ncol=3, frameon=False)
You should use 3 different axes, one for each line you need to plot.
The first one can be:
fig, ax_full = plt.subplots()
full = ax_full.plot(x_full, y_full, color = 'red', label = 'full')
Then you can generate the others with:
ax_enn = ax_full.twiny()
And plot each line on the respective axis:
enn = ax_enn.plot(x_enn, y_enn, color = 'blue', label = 'enn')
Then you can move the axis to the bottom with:
ax_enn.xaxis.set_ticks_position('bottom')
ax_enn.xaxis.set_label_position('bottom')
ax_enn.spines['bottom'].set_position(('axes', -0.15))
And finally customize the colors:
ax_enn.spines['bottom'].set_color('blue')
ax_enn.tick_params(axis='x', colors='blue')
ax_enn.xaxis.label.set_color('blue')
import numpy as np
import matplotlib.pyplot as plt
x_full = np.linspace(0.001, 0.02, 20)
x_enn = np.linspace(0.05, 1.95, 20)
x_knn = np.linspace(2, 40, 20)
y_full = np.random.rand(len(x_full))
y_enn = np.random.rand(len(x_enn))
y_knn = np.random.rand(len(x_knn))
fig, ax_full = plt.subplots()
full = ax_full.plot(x_full, y_full, color = 'red', label = 'full')
ax_full.spines['bottom'].set_color('red')
ax_full.tick_params(axis='x', colors='red')
ax_full.xaxis.label.set_color('red')
ax_enn = ax_full.twiny()
enn = ax_enn.plot(x_enn, y_enn, color = 'blue', label = 'enn')
ax_enn.xaxis.set_ticks_position('bottom')
ax_enn.xaxis.set_label_position('bottom')
ax_enn.spines['bottom'].set_position(('axes', -0.15))
ax_enn.spines['bottom'].set_color('blue')
ax_enn.tick_params(axis='x', colors='blue')
ax_enn.xaxis.label.set_color('blue')
ax_knn = ax_full.twiny()
knn = ax_knn.plot(x_knn, y_knn, color = 'green', label = 'knn')
ax_knn.xaxis.set_ticks_position('bottom')
ax_knn.xaxis.set_label_position('bottom')
ax_knn.spines['bottom'].set_position(('axes', -0.3))
ax_knn.spines['bottom'].set_color('green')
ax_knn.tick_params(axis='x', colors='green')
ax_knn.xaxis.label.set_color('green')
lines = full + enn + knn
labels = [l.get_label() for l in lines]
ax_full.legend(lines, labels)
plt.tight_layout()
plt.show()