pythontensorflowkeras

Dynamic number of stacked LSTM in custom Tensorflow model


I'm trying to implement a custom model in tensorflow extending the tf.keras.Model class.

I need a way to add n stacked LSTM layers to the model.

For instance, assuming the following implementation

class CustomizedLSTM(tf.keras.Model):
    def __init__(self, num_hidden_layers, vocab_size):
        super(CustomizedLSTM, self).__init__()
        self.embedding = tf.keras.layers.Embedding(vocab_size,300)
        self.first_lstm = tf.keras.layers.LSTM(256, activation="relu")
        self.first_dense = tf.keras.layers.Dense(64, activation="relu")
        self.classification_layer = tf.keras.layers.Dense(1, activation="sigmoid")

    def call(self, inputs):
        x = self.embedding(inputs)
        x = self.first_lstm(x)
        x = self.first_dense(x)
        return self.classification_layer(x)

I would like to add the possibility to customize the number of hidden LSTM layers. in other words I would like create a model with num_hidden_layers stacked LSTMs.

Is it possible? Can you please help me?


Solution

  • class CustomizedLSTM(tf.keras.Model):
        def __init__(self, num_hidden_layers, dim_per_hidden, vocab_size):
            self.lstms = []
            super(CustomizedLSTM, self).__init__()
            self.embedding = tf.keras.layers.Embedding(vocab_size,300)
            '''
            To stack multiple LSTMs, it is mandatory for all the lower LSTMs to have 
            return_sequence=True, as they will be fed as input to the next LSTM.
            '''
            for i in range(num_hidden_layers):
                self.lstms.append(tf.keras.layers.LSTM(dim_per_hidden[i], activation="relu", return_sequences=True))
            '''
            The last lstm with return_sequences=False, you can change it according to 
            your needs.
            '''
            self.lstms.append(tf.keras.layers.LSTM(dim_per_hidden[i], activation="relu", return_sequences=False))
            self.first_dense = tf.keras.layers.Dense(64, activation="relu")
            self.classification_layer = tf.keras.layers.Dense(1, activation="sigmoid")
    
        def call(self, inputs):
            x = self.embedding(inputs)
            for layer in self.lstms:
                x = layer(x)
            x = self.first_dense(x)
            return self.classification_layer(x)
    

    I added another parameter that you can consider - "dim_per_hidden": This parameter is a list of numbers to decide the number of neurons of each lstm layer