I'm looking to keep the structure when using apply on a GroupBy object where some groups are NaN. Using dropna=False does not appear to help, NaN groups are still lost with apply.
mux = pd.MultiIndex.from_arrays([['a', 'a', np.nan, 'b', 'b'], ['t', 'u', np.nan, 'w', 'y']],
names=['level1', 'level2'])
df = pd.DataFrame({'col': [0, np.nan, np.nan, 3, 4]}, mux)
df
col
level1 level2
a t 0.0
u NaN
NaN NaN NaN
b w 3.0
y 4.0
df = df.groupby(['level2'], dropna=False).apply(lambda x: x)
df
col
level1 level2
a t 0.0
u NaN
b w 3.0
y 4.0
Seems like this is more like a bug for call the index without level
out = df.groupby(level='level2', dropna=False).apply(lambda x: x)
Out[706]:
col
level1 level2
a t 0.0
u NaN
b w 3.0
y 4.0
NaN NaN NaN