I have a dataframe of minute data for multiple Stocks, each stock has multiple sessions. See sample below
Symbol Time Open High Low Close Volume LOD
2724312 AEHR 2019-09-23 09:31:00 1.42 1.42 1.42 1.42 200 NaN
2724313 AEHR 2019-09-23 09:43:00 1.35 1.35 1.34 1.34 6062 NaN
2724314 AEHR 2019-09-23 09:58:00 1.35 1.35 1.29 1.30 8665 NaN
2724315 AEHR 2019-09-23 09:59:00 1.32 1.32 1.32 1.32 100 NaN
2724316 AEHR 2019-09-23 10:00:00 1.35 1.35 1.35 1.35 400 NaN
... ... ... ... ... ... ... ... ...
4266341 ZI 2021-09-10 15:56:00 63.08 63.16 63.08 63.15 18205 NaN
4266342 ZI 2021-09-10 15:57:00 63.14 63.14 63.07 63.07 19355 NaN
4266343 ZI 2021-09-10 15:58:00 63.07 63.12 63.07 63.10 16650 NaN
4266344 ZI 2021-09-10 15:59:00 63.09 63.12 63.06 63.11 25775 NaN
4266345 ZI 2021-09-10 16:00:00 63.11 63.17 63.11 63.17 28578 NaN
I need the Low Of Day(LOD) for the session (9:30-4pm) up to the time in each row.
The completed df should look like this
Symbol Time Open High Low Close Volume LOD
2724312 AEHR 2019-09-23 09:31:00 1.42 1.42 1.42 1.42 200 1.42
2724313 AEHR 2019-09-23 09:43:00 1.35 1.35 1.34 1.34 6062 1.34
2724314 AEHR 2019-09-23 09:58:00 1.35 1.35 1.29 1.30 8665 1.29
2724315 AEHR 2019-09-23 09:59:00 1.32 1.32 1.32 1.32 100 1.29
2724316 AEHR 2019-09-23 10:00:00 1.35 1.35 1.35 1.35 400 1.29
... ... ... ... ... ... ... ... ...
4266341 ZI 2021-09-10 15:56:00 63.08 63.16 63.08 63.15 18205 63.08
4266342 ZI 2021-09-10 15:57:00 63.14 63.14 63.07 63.07 19355 63.07
4266343 ZI 2021-09-10 15:58:00 63.07 63.12 63.07 63.10 16650 63.07
4266344 ZI 2021-09-10 15:59:00 63.09 63.12 63.06 63.11 25775 63.06
4266345 ZI 2021-09-10 16:00:00 63.11 63.17 63.11 63.17 28578 63.06
My current solution
prev_symbol = "WXYZ"
prev_low = 10000000
prev_session = datetime.date(1920, 1, 1)
session_start = 1
for i, row in df.iterrows():
current_session = (df['Time'].iloc[i]).time()
current_symbol = df['Symbol'].iloc[i]
if current_symbol == prev_symbol:
if current_session == prev_session:
sesh_low = df.iloc[session_start:i, 'Low'].min()
df.at[i, 'LOD'] = sesh_low
else:
df.at[i, 'LOD'] = df.at[i, 'Low']
prev_session = current_session
session_start = i
else:
df.at[i, 'LOD'] = df.at[i, 'Low']
prev_symbol = current_symbol
prev_session = current_session
session_start = i
This returns a SettingWithCopyWarning
error. Please help
You can try .groupby()
+ .expanding()
:
# if you have values already converted/sorted, skip:
# df["Time"] = pd.to_datetime(df["Time"])
# df = df.sort_values(by=["Symbol", "Time"])
df["LOD"] = df.groupby("Symbol")["Low"].expanding().min().values
print(df)
Prints:
Symbol Time Open High Low Close Volume LOD
2724312 AEHR 2019-09-23 09:31:00 1.42 1.42 1.42 1.42 200 1.42
2724313 AEHR 2019-09-23 09:43:00 1.35 1.35 1.34 1.34 6062 1.34
2724314 AEHR 2019-09-23 09:58:00 1.35 1.35 1.29 1.30 8665 1.29
2724315 AEHR 2019-09-23 09:59:00 1.32 1.32 1.32 1.32 100 1.29
2724316 AEHR 2019-09-23 10:00:00 1.35 1.35 1.35 1.35 400 1.29
4266341 ZI 2021-09-10 15:56:00 63.08 63.16 63.08 63.15 18205 63.08
4266342 ZI 2021-09-10 15:57:00 63.14 63.14 63.07 63.07 19355 63.07
4266343 ZI 2021-09-10 15:58:00 63.07 63.12 63.07 63.10 16650 63.07
4266344 ZI 2021-09-10 15:59:00 63.09 63.12 63.06 63.11 25775 63.06
4266345 ZI 2021-09-10 16:00:00 63.11 63.17 63.11 63.17 28578 63.06