I'm trying removing outliers from this nested dataset
df_join
# A tibble: 12 × 2
# Groups: signals [12]
sls data
<chr> <list>
1 alphaX1 <tibble [75 × 5]>
2 betaY2 <tibble [75 × 5]>
3 gammaZ3 <tibble [75 × 5]>
4 deltaA4 <tibble [75 × 5]>
5 epsilonB5 <tibble [75 × 5]>
6 zetaC6 <tibble [75 × 5]>
7 etaD7 <tibble [75 × 5]>
8 thetaE8 <tibble [75 × 5]>
9 iotaF9 <tibble [75 × 5]>
10 kappaG10 <tibble [75 × 5]>
11 lambdaH11 <tibble [75 × 5]>
12 muI12 <tibble [75 × 5]>
for instance, the first element of it contains this series of variable:
# A tibble: 75 × 5
Var1 Var2 Var3 Var4 value
<fct> <fct> <fct> <fct> <dbl>
1 A1 G1 X A-B -8.52
2 A1 G1 X A-C -4.77
3 A1 G1 X B-C -3.25
4 B2 G1 X A-B 2.13
5 B2 G1 X A-C 1.85
6 B2 G1 X B-C 3.92
7 C3 G1 X A-B -0.33
8 C3 G1 X A-C -2.10
9 C3 G1 X B-C -1.46
10 D4 G1 X A-B 0.51
the entire content of it is the following one:
df_join <- tibble::tibble(
channel = c("chA", "chB", "chC", "chD", "chE", "chF"),
recordings = replicate(
6,
tibble::tibble(
subject_id = factor(rep(sprintf("P%02d", 1:25), each = 3)),
group = factor("T1"),
sxs = factor("X"),
clc = factor(rep(c("cond1", "cond2", "cond3"), times = 25)),
sls_strength = rnorm(75, mean = 0, sd = 5)
),
simplify = FALSE
)
) |>
dplyr::group_by(channel)
I've tried to check for the presence of outliers as follows:
outliers_table <- df_join %>%
tidyr::unnest(recordings) %>%
dplyr::select(clc, channel, sls_strength) %>%
dplyr::group_by(clc) %>%
rstatix::identify_outliers(sls_strength)
That turns
# A tibble: 30 × 5
clc channel sls_strength is.outlier is.extreme
<fct> <chr> <dbl> <lgl> <lgl>
1 cond1 chA -10.5 TRUE FALSE
2 cond1 chB 14.2 TRUE FALSE
3 cond1 chC 16.0 TRUE FALSE
4 cond1 chC 15.3 TRUE FALSE
5 cond1 chC 22.8 TRUE TRUE
6 cond1 chC 13.9 TRUE FALSE
7 cond1 chC 12.5 TRUE FALSE
8 cond1 chD -12.1 TRUE FALSE
9 cond1 chE 18.6 TRUE FALSE
10 cond1 chF 24.0 TRUE TRUE
If I'm interested in delete all of those values that are TRULY EXTREME, how could do I do by using some iterative function orr some if statment?? Please just consider also other alternative in case it is easier (also to keep on the command I've written by adding another %>% command row) that scripring down a for loop or some other function.
Since I'm at the very beginning I've coded the failing code I've created:
outliers_bale <- df_join %>%
unnest() %>%
dplyr::select(clc, sls, value) %>%
group_by(clc) %>% #it is the equivalent to use as grouping variable the time
identify_outliers(value) %>%
filter(is.outlier & is.extreme)
values <- outliers_table$value
df_join[!(df_join$data %in% values), ]
And I am not able to figure out whether it worked or not.
Thanks in advance
All right. Let's do it together step by step. As I understand it, you have serious concerns that in your data (I keep it in the variable df
) there are outliers and even extreme values. First, we will extract from your data only one grouped tibble and filter for COND ==" NEG-NOC "
library(tidyverse)
library(rstatix)
library(outliers)
data = df$data[[1]] %>% filter(COND=="NEG-NOC")
Now let's consider what method of outlier identification we will use.
We can use the boxplot
function for this.
boxplot.stats(data$value)$out
#[1] 8.164181
This is fine, but it only gives us outliers in vector form. The second way is to use identify_outliers
. This gives us a tibble
but still only with those lines that have these outlier values.
data %>% identify_outliers(variable = "value")
# # A tibble: 1 x 7
# ID GR SES COND value is.outlier is.extreme
# <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl>
# 1 11 RP V NEG-NOC 8.16 TRUE FALSE
Well, let's use the outlier
function from the outliers
package. This can give us a logic vector.
outlier(data$value, opposite = T)
#[1] 8.164181
outlier(data$value, opposite = T, logical = T)
# [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#[22] FALSE FALSE FALSE FALSE
However, neither of these methods will assist you in deciding what to do with these outliers. Please read this carefully . As you can see, you have three options to choose from: Imputation, Capping, Prediction. Which one will you choose? I chose Capping. So I wrote a tiny function that identifies outliers, extreme values and additionally returns your values after Capping.
fOutCapp = function(data){
x = data$value
qnt = quantile(x, probs=c(.25, .75), na.rm = T)
caps = quantile(x, probs=c(.05, .95), na.rm = T)
H = 1.5 * IQR(x, na.rm = T)
He = 3 * IQR(x, na.rm = T)
is.outlier = (x < (qnt[1] - H)) | (x > (qnt[2] + H))
x[x < (qnt[1] - H)] <- caps[1]
x[x > (qnt[2] + H)] <- caps[2]
data %>% group_by(COND) %>%
mutate(
is.outlier = is.outlier,
is.extreme = (x < (qnt[1] - He)) | (x > (qnt[2] + He)),
cap.value = x
)
}
Let's see if it works
data %>% fOutCapp() %>% filter(is.outlier)
# A tibble: 1 x 8
# ID GR SES COND value is.outlier is.extreme cap.value
# <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl> <dbl>
# 1 11 RP V NEG-NOC 8.16 TRUE FALSE 4.95
data %>% fOutCapp()
# A tibble: 25 x 8
# ID GR SES COND value is.outlier is.extreme cap.value
# <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl> <dbl>
# 1 01 RP V NEG-NOC -11.1 FALSE FALSE -11.1
# 2 04 RP V NEG-NOC 0.239 FALSE FALSE 0.239
# 3 06 RP V NEG-NOC -2.96 FALSE FALSE -2.96
# 4 07 RP V NEG-NOC 1.09 FALSE FALSE 1.09
# 5 08 RP V NEG-NOC 2.99 FALSE FALSE 2.99
# 6 09 RP V NEG-NOC 5.42 FALSE FALSE 5.42
# 7 10 RP V NEG-NOC -2.83 FALSE FALSE -2.83
# 8 11 RP V NEG-NOC 8.16 TRUE FALSE 4.95
# 9 12 RP V NEG-NOC -9.83 FALSE FALSE -9.83
# 10 13 RP V NEG-NOC 2.12 FALSE FALSE 2.12
# ... with 15 more rows
Note, however, that your data inside the variable data
is grouped after the variable COND
. So let's write one more tiny function that will do our fOutCapp
on each of the groups.
fOutCappGroup = function(data) data %>% group_by(COND) %>%
group_modify(~fOutCapp(.x))
df$data[[1]] %>% fOutCappGroup()
# # A tibble: 75 x 8
# # Groups: COND [3]
# COND ID GR SES value is.outlier is.extreme cap.value
# <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl> <dbl>
# 1 NEG-CTR 01 RP V -11.6 FALSE FALSE -11.6
# 2 NEG-CTR 04 RP V -0.314 FALSE FALSE -0.314
# 3 NEG-CTR 06 RP V -0.214 FALSE FALSE -0.214
# 4 NEG-CTR 07 RP V -2.83 FALSE FALSE -2.83
# 5 NEG-CTR 08 RP V 4.24 FALSE FALSE 4.24
# 6 NEG-CTR 09 RP V 9.57 FALSE FALSE 9.57
# 7 NEG-CTR 10 RP V -6.13 FALSE FALSE -6.13
# 8 NEG-CTR 11 RP V 0.529 FALSE FALSE 0.529
# 9 NEG-CTR 12 RP V -7.74 FALSE FALSE -7.74
# 10 NEG-CTR 13 RP V 1.27 FALSE FALSE 1.27
# # ... with 65 more rows
Bingo. Everything works great. Now we only needs to do one simple mutation.
df %>% group_by(signals) %>%
mutate(data = map(data, ~fOutCappGroup(.x))) %>%
unnest(data)
output
# A tibble: 450 x 9
# Groups: signals [6]
signals COND ID GR SES value is.outlier is.extreme cap.value
<chr> <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl> <dbl>
1 P3FCz NEG-CTR 01 RP V -11.6 FALSE FALSE -11.6
2 P3FCz NEG-CTR 04 RP V -0.314 FALSE FALSE -0.314
3 P3FCz NEG-CTR 06 RP V -0.214 FALSE FALSE -0.214
4 P3FCz NEG-CTR 07 RP V -2.83 FALSE FALSE -2.83
5 P3FCz NEG-CTR 08 RP V 4.24 FALSE FALSE 4.24
6 P3FCz NEG-CTR 09 RP V 9.57 FALSE FALSE 9.57
7 P3FCz NEG-CTR 10 RP V -6.13 FALSE FALSE -6.13
8 P3FCz NEG-CTR 11 RP V 0.529 FALSE FALSE 0.529
9 P3FCz NEG-CTR 12 RP V -7.74 FALSE FALSE -7.74
10 P3FCz NEG-CTR 13 RP V 1.27 FALSE FALSE 1.27
# ... with 440 more rows
This is how your sentence has been completed. Not only did we identify outliers, but we also applied capping to them. Now decide whether to use the value
variable or the cap.value
variable for further analysis. The decision is yours.
A small update for a @little_statistician
First, we will load all your data.
#Loading libraries
library(tidyverse)
library(rstatix)
library(ggpubr)
library(readxl)
#Upload data
df_join <- read_excel("df_join.xlsx")
df = df_join %>%
mutate_at(vars(ID:COND), factor) %>%
pivot_longer(P3FCz:LPP2Pz, names_to = "signals") %>%
group_by(signals) %>%
nest()
Now let's define the fOutCapp
and fOutCappGroup
functions once again. Note, in the original version of fOutCapp
there is no need for the group_by
function.
fOutCapp = function(data){
x = data$value
qnt = quantile(x, probs=c(.25, .75), na.rm = T)
caps = quantile(x, probs=c(.05, .95), na.rm = T)
H = 1.5 * IQR(x, na.rm = T)
He = 3 * IQR(x, na.rm = T)
is.outlier = (x < (qnt[1] - H)) | (x > (qnt[2] + H))
x[x < (qnt[1] - H)] <- caps[1]
x[x > (qnt[2] + H)] <- caps[2]
data %>%
mutate(
is.outlier = is.outlier,
is.extreme = (x < (qnt[1] - He)) | (x > (qnt[2] + He)),
cap.value = x
)
}
fOutCappGroup = function(data) data %>% group_by(COND) %>%
group_modify(~fOutCapp(.x))
Now is the time to mutate.
df = df %>% group_by(signals) %>%
mutate(data = map(data, ~fOutCappGroup(.x))) %>%
unnest(data) %>% # step 1
mutate(old.value = value,
value = cap.value) %>% #Step 2
nest(data=COND:old.value) #Step 3
It is very important that you understand what is really going on here. So in step 1 we group your tibble
by the signals
variable. It is simple and you certainly understand it. In step 2 we mutate the data
variable, which is a list consisting of data for individual signals.
output after step 2
# A tibble: 12 x 2
# Groups: signals [12]
signals data
<chr> <list>
1 P3FCz <grouped_df [75 x 8]>
2 P3Cz <grouped_df [75 x 8]>
3 P3Pz <grouped_df [75 x 8]>
4 LPPearlyFCz <grouped_df [75 x 8]>
5 LPPearlyCz <grouped_df [75 x 8]>
6 LPPearlyPz <grouped_df [75 x 8]>
7 LPP1FCz <grouped_df [75 x 8]>
8 LPP1Cz <grouped_df [75 x 8]>
9 LPP1Pz <grouped_df [75 x 8]>
10 LPP2FCz <grouped_df [75 x 8]>
11 LPP2Cz <grouped_df [75 x 8]>
12 LPP2Pz <grouped_df [75 x 8]>
This way your inner tibbles have gained new variables. You will see it after the unnest
in step 3.
output after step 3
# A tibble: 900 x 9
# Groups: signals [12]
signals COND ID GR SES value is.outlier is.extreme cap.value
<chr> <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl> <dbl>
1 P3FCz NEG-CTR 01 RP V -11.6 FALSE FALSE -11.6
2 P3FCz NEG-CTR 04 RP V -0.314 FALSE FALSE -0.314
3 P3FCz NEG-CTR 06 RP V -0.214 FALSE FALSE -0.214
4 P3FCz NEG-CTR 07 RP V -2.83 FALSE FALSE -2.83
5 P3FCz NEG-CTR 08 RP V 4.24 FALSE FALSE 4.24
6 P3FCz NEG-CTR 09 RP V 9.57 FALSE FALSE 9.57
7 P3FCz NEG-CTR 10 RP V -6.13 FALSE FALSE -6.13
8 P3FCz NEG-CTR 11 RP V 0.529 FALSE FALSE 0.529
9 P3FCz NEG-CTR 12 RP V -7.74 FALSE FALSE -7.74
10 P3FCz NEG-CTR 13 RP V 1.27 FALSE FALSE 1.27
# ... with 890 more rows
And since you already have a very nice function that generates beautiful boxplot-violin plots with different stats, let's do one small mutation (step 4) replacing value
with cap.value
.
output after step 4
# A tibble: 900 x 10
# Groups: signals [12]
signals COND ID GR SES value is.outlier is.extreme cap.value old.value
<chr> <fct> <fct> <fct> <fct> <dbl> <lgl> <lgl> <dbl> <dbl>
1 P3FCz NEG-CTR 01 RP V -11.6 FALSE FALSE -11.6 -11.6
2 P3FCz NEG-CTR 04 RP V -0.314 FALSE FALSE -0.314 -0.314
3 P3FCz NEG-CTR 06 RP V -0.214 FALSE FALSE -0.214 -0.214
4 P3FCz NEG-CTR 07 RP V -2.83 FALSE FALSE -2.83 -2.83
5 P3FCz NEG-CTR 08 RP V 4.24 FALSE FALSE 4.24 4.24
6 P3FCz NEG-CTR 09 RP V 9.57 FALSE FALSE 9.57 9.57
7 P3FCz NEG-CTR 10 RP V -6.13 FALSE FALSE -6.13 -6.13
8 P3FCz NEG-CTR 11 RP V 0.529 FALSE FALSE 0.529 0.529
9 P3FCz NEG-CTR 12 RP V -7.74 FALSE FALSE -7.74 -7.74
10 P3FCz NEG-CTR 13 RP V 1.27 FALSE FALSE 1.27 1.27
# ... with 890 more rows
Finally, let's roll it all back to its original form with the variable data
in step 5.
output after step 5
# A tibble: 12 x 2
# Groups: signals [12]
signals data
<chr> <list>
1 P3FCz <tibble [75 x 9]>
2 P3Cz <tibble [75 x 9]>
3 P3Pz <tibble [75 x 9]>
4 LPPearlyFCz <tibble [75 x 9]>
5 LPPearlyCz <tibble [75 x 9]>
6 LPPearlyPz <tibble [75 x 9]>
7 LPP1FCz <tibble [75 x 9]>
8 LPP1Cz <tibble [75 x 9]>
9 LPP1Pz <tibble [75 x 9]>
10 LPP2FCz <tibble [75 x 9]>
11 LPP2Cz <tibble [75 x 9]>
12 LPP2Pz <tibble [75 x 9]>
Well now let's make a graph!
#Function to special boxplot3
SpecBoxplot3 = function(data, signal, parametric = FALSE, autor = "G. Anonim"){
if(parametric) {
pwc = data %>%
pairwise_t_test(value~COND, paired = TRUE,
p.adjust.method = "bonferroni") %>%
add_xy_position(x = "COND") %>%
mutate(COND="NEG-CTR",
lab = paste(p, " - ", p.adj.signif))
res.test = data %>% anova_test(value~COND)
} else {
pwc = data %>% pairwise_wilcox_test(value~COND) %>%
add_xy_position(x = "COND") %>%
mutate(COND="NEG-CTR",
lab = paste(p, " - ", p.adj.signif))
res.test = data %>% kruskal_test(value~COND)
}
data %>% ggplot(aes(COND, value, fill=COND))+
geom_violin(alpha=0.2)+
geom_boxplot(outlier.shape = 23,
outlier.size = 3,
alpha=0.6)+
geom_jitter(shape=21, width =0.1)+
stat_pvalue_manual(pwc, step.increase=0.05, label = "lab")+
ylab(signal)+
labs(title = get_test_label(res.test, detailed = TRUE),
subtitle = get_pwc_label(pwc),
caption = autor)
}
#special boxplot for the P3FCz signal
df$data[[1]] %>% SpecBoxplot3("P3FCz", TRUE)
df$data[[1]] %>% SpecBoxplot3("P3FCz", FALSE)
As you can see on the chart, there are no outliers anymore!
Now we're ready to plot each signal!
#A function that creates a special boxplot3 and adds it to a data frame
AddSignalBoxplot3 = function(df, signal, printPlot=TRUE) {
plot1 = SpecBoxplot3(df$data[[1]], signal, TRUE)
plot2 = SpecBoxplot3(df$data[[1]], signal, FALSE)
if(printPlot) print(plot1)
if(printPlot) print(plot2)
df %>% mutate(boxplot1 = list(plot1),
boxplot2 = list(plot2),
)
}
#Added special boxplot3
df %>% group_by(signals) %>%
group_modify(~AddSignalBoxplot3(.x, .y))
Good luck on your further analysis !!
Last update
create.plot2 = function(df, group){
data = df$data[[1]]
minv = min(data$value)
maxv = max(data$value)
df.stat = data %>% group_by(COND) %>%
summarise(
n = n(),
mean = mean(value),
sd = sd(value),
min = minv,
max = maxv,
x = seq(min, max, length.out = n*100),
value = dnorm(x, mean, sd)
)
data %>% ggplot(aes(value, fill=COND))+
geom_histogram(aes(y=..density..), colour="black", fill="white", bins = 30)+
geom_density(alpha=.2, fill="red", col="red")+
geom_line(aes(x, value), data=df.stat, col="blue")+
xlab(group)+
facet_grid(cols = vars(COND))
}
df %>% group_by(signals) %>%
group_map(create.plot2)