pythongeopandasgeoplot

How to display a heatmap on a specific parameter with geopandas?


In my very simple case I would like to display the heatmap of the points in the points GeoJSON file but not on the geographic density (lat, long). In the points file each point has a confidence property (a value from 0 to 1), how to display the heatmap on this parameter? weight=points.confidence don't seem to work.

for exemple:

#points.geojson
{
"type": "FeatureCollection",
"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
"features": [
{ "type": "Feature", "properties": {"confidence": 0.67}, "geometry": { "type": "Point", "coordinates": [ 37.703471404215918, 26.541625492300192 ] } },
{ "type": "Feature", "properties": {"confidence": 0.76}, "geometry": { "type": "Point", "coordinates": [ 37.009744331225093, 26.710090585532761 ] } },
{ "type": "Feature", "properties": {"confidence": 0.94}, "geometry": { "type": "Point", "coordinates": [ 37.541708538306224, 26.160111944646022 ] } },
{ "type": "Feature", "properties": {"confidence": 0.52}, "geometry": { "type": "Point", "coordinates": [ 37.628566642215354, 25.917300595223857 ] } },
{ "type": "Feature", "properties": {"confidence": 0.46}, "geometry": { "type": "Point", "coordinates": [ 37.676499267124271, 26.653959791866598 ] } },
{ "type": "Feature", "properties": {"confidence": 0.55}, "geometry": { "type": "Point", "coordinates": [ 37.677033863264533, 26.654033815175087 ] } },
{ "type": "Feature", "properties": {"confidence": 0.12}, "geometry": { "type": "Point", "coordinates": [ 37.37522057234797, 26.353271000367258 ] } },
{ "type": "Feature", "properties": {"confidence": 0.62}, "geometry": { "type": "Point", "coordinates": [ 37.396556958266373, 26.459196264023291 ] } },
{ "type": "Feature", "properties": {"confidence": 0.21}, "geometry": { "type": "Point", "coordinates": [ 36.879775221618168, 26.901743663072878 ] } }
]
}

The image below shows my result but it is on the geographic density not confidence score density.

import geoplot as gplt
import geopandas as gpd
import geoplot.crs as gcrs
import matplotlib.pyplot as plt

points = gpd.read_file('points.geojson')
polygons = gpd.read_file('polygons.geojson')

ax = gplt.polyplot(polygons, projection=gcrs.AlbersEqualArea(), zorder=1)
gplt.kdeplot(points, cmap='Reds', shade=True, clip=polygons, ax=ax) 
#weight=points.confidence don’t work inside kdeplot()

plt.show()

enter image description here


Solution

  • # fmt: off
    points = {
    "type": "FeatureCollection",
    "crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:OGC:1.3:CRS84" } },
    "features": [
    { "type": "Feature", "properties": {"confidence": 0.67}, "geometry": { "type": "Point", "coordinates": [ 37.703471404215918, 26.541625492300192 ] } },
    { "type": "Feature", "properties": {"confidence": 0.76}, "geometry": { "type": "Point", "coordinates": [ 37.009744331225093, 26.710090585532761 ] } },
    { "type": "Feature", "properties": {"confidence": 0.94}, "geometry": { "type": "Point", "coordinates": [ 37.541708538306224, 26.160111944646022 ] } },
    { "type": "Feature", "properties": {"confidence": 0.52}, "geometry": { "type": "Point", "coordinates": [ 37.628566642215354, 25.917300595223857 ] } },
    { "type": "Feature", "properties": {"confidence": 0.46}, "geometry": { "type": "Point", "coordinates": [ 37.676499267124271, 26.653959791866598 ] } },
    { "type": "Feature", "properties": {"confidence": 0.55}, "geometry": { "type": "Point", "coordinates": [ 37.677033863264533, 26.654033815175087 ] } },
    { "type": "Feature", "properties": {"confidence": 0.12}, "geometry": { "type": "Point", "coordinates": [ 37.37522057234797, 26.353271000367258 ] } },
    { "type": "Feature", "properties": {"confidence": 0.62}, "geometry": { "type": "Point", "coordinates": [ 37.396556958266373, 26.459196264023291 ] } },
    { "type": "Feature", "properties": {"confidence": 0.21}, "geometry": { "type": "Point", "coordinates": [ 36.879775221618168, 26.901743663072878 ] } }
    ]
    }
    # fmt: on
    import geopandas as gpd
    import plotly.express as px
    import requests
    from pathlib import Path
    from zipfile import ZipFile
    import urllib
    
    # fmt: off
    # download boundaries
    url = "https://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_1_states_provinces.zip"
    f = Path.cwd().joinpath(urllib.parse.urlparse(url).path.split("/")[-1])
    # fmt: on
    
    if not f.exists():
        r = requests.get(url, stream=True, headers={"User-Agent": "XY"})
        with open(f, "wb") as fd:
            for chunk in r.iter_content(chunk_size=128):
                fd.write(chunk)
        zfile = ZipFile(f)
        zfile.extractall(f.stem)
    
    # load downloaded boundaries
    gdf2 = gpd.read_file(str(f.parent.joinpath(f.stem).joinpath(f"{f.stem}.shp")))
    
    # confidence data
    gdf = gpd.GeoDataFrame.from_features(points)
    
    # now the simple bit, densitity plot data and Saudi Arabia regional boundaries as a layer
    fig = px.density_mapbox(
        gdf, lat=gdf.geometry.y, lon=gdf.geometry.x, z="confidence"
    ).update_layout(
        mapbox={
            "style": "carto-positron",
            "zoom": 6,
            "layers": [
                {
                    "source": gdf2.loc[gdf2["iso_a2"].eq("SA")].geometry.__geo_interface__,
                    "type": "line",
                }
            ],
        },
        margin={"l":0,"r":0,"t":0,"b":0}
    )
    
    fig
    

    enter image description here