We've had great results using a K-NN search with a GiST index with gist_trgm_ops
. Pure magic. I've got other situations, with other datatypes like timestamp
where distance functions would be quite useful. If I didn't dream it, this is, or was, available through pg_catalog
. Looking around, I can't find a way to search on indexes by such properties. I think what I'm after, in this case, is AMPROP_DISTANCE_ORDERABLE
under-the-hood.
Just checked, and pg_am
did have a lot more attributes than it does now, prior to 9.6.
Is there another way to figure out what options various indexes have with a catalog search?
jjanes' answer inspired me to look at the system information functions some more, and to spend a day in the pg_catalog tables. The catalogs for indexes and operators are complicated. The system information functions are a big help. This piece proved super useful for getting a handle on things:
https://postgrespro.com/blog/pgsql/4161264
I think the conclusion is "no, you can't readily figure out what data types and indexes support proximity searches." The relevant attribute is a property of a column in a specific index. However, it looks like nearest-neighbor searching requires a GiST index, and that there are readily-available index operator classes to add K-NN searching to a huge range of common types. Happy for corrections on these conclusions, or the details below.
https://www.postgresql.org/docs/current/gist-builtin-opclasses.html
From various bits of the docs, it sounds like there are distance (proximity, nearest neighbor, K-NN) operators for GiST indexes on a handful of built-in geometric types.
box
circle
point
poly
Not listed as such in the docs, but visible with this query:
select am.amname AS index_method
, opc.opcname AS opclass_name
, opc.opcintype::regtype AS indexed_type
, opc.opcdefault AS is_default
from pg_am am
, pg_opclass opc
where opc.opcmethod = am.oid
and am.amname = 'btree'
order by 1,2;
https://www.postgresql.org/docs/current/btree-gist.html
I guess a B-tree is a special case of a GiST, and there's a B-tree operator class to match. The docs say these native types are supported:
int2
int4
int8
float4
float8
timestamp with time zone
timestamp without time zone
time without time zone
date
interval
oid
money
https://www.postgresql.org/docs/current/brin-builtin-opclasses.html
There are over 70 listed in the internals docs.
https://www.postgresql.org/docs/12/gin-builtin-opclasses.html
array_ops
jsonb_ops
jsonb_path_ops
tsvector_ops
https://www.postgresql.org/docs/current/indexes-opclass.html There are special operator classes for text comparisons made character-by-character, rather than through a collation. Or so the docs say:
text_pattern_ops
varchar_pattern_ops
bpchar_pattern_ops
Beyond this, the included pg_trgm
module includes operators for GIN and GiST, with the GiST version optimizing <->
. I think this shows up as:
text
Note: Postgres 14 modifies pg_trgm
to allow you to adjust the "signature length" for the index entry. Longer is possibly more accurate, shorter signatures are smaller on disk. If you've been using pg_trgm
, it might be worth experimenting with the signature length in PG 14.
https://www.postgresql.org/docs/current/pgtrgm.html
box_ops
kd_point_ops
network_ops
poly_ops
quad_point_ops
range_ops
text_ops
Here's a search on pg_operator
to look for matches starting from the <->
operator itself:
select oprnamespace::regnamespace::text as schema_name,
oprowner::regrole as owner,
oprname as operator,
oprleft::regtype as left,
oprright::regtype as right,
oprresult::regtype as result,
oprcom::regoperator as commutator
from pg_operator
where oprname = '<->'
order by 1
Output from one of our severs:
| schema_name | owner | operator | left | right | result | commutator |
+-------------+----------+----------+-----------------------------+-----------------------------+------------------+--------------------------------------------------------------+
| extensions | postgres | <-> | text | text | real | <->(text,text) |
| extensions | postgres | <-> | money | money | money | <->(money,money) |
| extensions | postgres | <-> | date | date | integer | <->(date,date) |
| extensions | postgres | <-> | real | real | real | <->(real,real) |
| extensions | postgres | <-> | double precision | double precision | double precision | <->(double precision,double precision) |
| extensions | postgres | <-> | smallint | smallint | smallint | <->(smallint,smallint) |
| extensions | postgres | <-> | integer | integer | integer | <->(integer,integer) |
| extensions | postgres | <-> | bigint | bigint | bigint | <->(bigint,bigint) |
| extensions | postgres | <-> | interval | interval | interval | <->(interval,interval) |
| extensions | postgres | <-> | oid | oid | oid | <->(oid,oid) |
| extensions | postgres | <-> | time without time zone | time without time zone | interval | <->(time without time zone,time without time zone) |
| extensions | postgres | <-> | timestamp without time zone | timestamp without time zone | interval | <->(timestamp without time zone,timestamp without time zone) |
| extensions | postgres | <-> | timestamp with time zone | timestamp with time zone | interval | <->(timestamp with time zone,timestamp with time zone) |
| pg_catalog | postgres | <-> | box | box | double precision | <->(box,box) |
| pg_catalog | postgres | <-> | path | path | double precision | <->(path,path) |
| pg_catalog | postgres | <-> | line | line | double precision | <->(line,line) |
| pg_catalog | postgres | <-> | lseg | lseg | double precision | <->(lseg,lseg) |
| pg_catalog | postgres | <-> | polygon | polygon | double precision | <->(polygon,polygon) |
| pg_catalog | postgres | <-> | circle | circle | double precision | <->(circle,circle) |
| pg_catalog | postgres | <-> | point | circle | double precision | <->(circle,point) |
| pg_catalog | postgres | <-> | circle | point | double precision | <->(point,circle) |
| pg_catalog | postgres | <-> | point | polygon | double precision | <->(polygon,point) |
| pg_catalog | postgres | <-> | polygon | point | double precision | <->(point,polygon) |
| pg_catalog | postgres | <-> | circle | polygon | double precision | <->(polygon,circle) |
| pg_catalog | postgres | <-> | polygon | circle | double precision | <->(circle,polygon) |
| pg_catalog | postgres | <-> | point | point | double precision | <->(point,point) |
| pg_catalog | postgres | <-> | box | line | double precision | <->(line,box) |
| pg_catalog | postgres | <-> | tsquery | tsquery | tsquery | 0 |
| pg_catalog | postgres | <-> | line | box | double precision | <->(box,line) |
| pg_catalog | postgres | <-> | point | line | double precision | <->(line,point) |
| pg_catalog | postgres | <-> | line | point | double precision | <->(point,line) |
| pg_catalog | postgres | <-> | point | lseg | double precision | <->(lseg,point) |
| pg_catalog | postgres | <-> | lseg | point | double precision | <->(point,lseg) |
| pg_catalog | postgres | <-> | point | box | double precision | <->(box,point) |
| pg_catalog | postgres | <-> | box | point | double precision | <->(point,box) |
| pg_catalog | postgres | <-> | lseg | line | double precision | <->(line,lseg) |
| pg_catalog | postgres | <-> | line | lseg | double precision | <->(lseg,line) |
| pg_catalog | postgres | <-> | lseg | box | double precision | <->(box,lseg) |
| pg_catalog | postgres | <-> | box | lseg | double precision | <->(lseg,box) |
| pg_catalog | postgres | <-> | point | path | double precision | <->(path,point) |
| pg_catalog | postgres | <-> | path | point | double precision | <->(point,path) |
+-------------+----------+----------+-----------------------------+-----------------------------+------------------+--------------------------------------------------------------+
Did I miss any index opts worth knowing about?
Here's a longer-than-it-should-be-because-I-still-find-the-catalogs-confusing query to pull out the columns from each user index, and figure out their more interesting properties. For a nice, short catalog search of much utility, see https://dba.stackexchange.com/questions/186944/how-to-list-all-the-indexes-along-with-their-type-btree-brin-hash-etc
with
basic_details as (
select relnamespace::regnamespace::text as schema_name,
indrelid::regclass::text as table_name,
indexrelid::regclass::text as index_name,
unnest(indkey) as column_ordinal_position , -- WITH ORDINALITY would be nice here, didn't get it working.
generate_subscripts(indkey, 1) + 1 as column_position_in_index --
from pg_index
join pg_class on pg_class.oid = pg_index.indrelid
),
enriched_details as (
select basic_details.schema_name,
basic_details.table_name,
basic_details.index_name,
basic_details.column_ordinal_position,
basic_details.column_position_in_index,
columns.column_name,
columns.udt_name as column_type_name
from basic_details
join information_schema.columns as columns
on columns.table_schema = basic_details.schema_name
and columns.table_name = basic_details.table_name
and columns.ordinal_position = basic_details.column_ordinal_position
where schema_name not like 'pg_%'
)
select *,
-- https://postgrespro.com/blog/pgsql/4161264
coalesce(pg_index_column_has_property(index_name,column_position_in_index,'distance_orderable'), false) as supports_knn_searches,
coalesce(pg_index_column_has_property(index_name,column_position_in_index,'search_array'), false) as supports_in_searches,
coalesce(pg_index_column_has_property(index_name,column_position_in_index,'returnable'), false) as supports_index_only_scans,
(select indexdef
from pg_indexes
where pg_indexes.schemaname = enriched_details.schema_name
and pg_indexes.indexname = enriched_details.index_name) as index_definition
from enriched_details
order by supports_in_searches desc,
schema_name,
table_name,
index_name
timestamp type supports KNN with GiST indexes using the <-> operator created by the btree_gist extension.
You can check if a specific column of a specific index supports it, like this:
select pg_index_column_has_property('pgbench_history_mtime_idx'::regclass,1,'distance_orderable');