I have pairwise distances data like this:
distances = {
('DN1357_i2', 'DN1357_i5'): 1.0,
('DN1357_i2', 'DN10172_i1'): 28.0,
('DN1357_i2', 'DN1357_i1'): 8.0,
('DN1357_i5', 'DN1357_i1'): 2.0,
('DN1357_i5', 'DN10172_i1'): 34.0,
('DN1357_i1', 'DN10172_i1'): 38.0,
}
So I have 4 objects, I clustered these objects using this code lines:
keys = [sorted(k) for k in obj_distances.keys()]
values = obj_distances.values()
sorted_keys, distances = zip(*sorted(zip(keys, values)))
Z = linkage(distances)
labels = sorted(set([key[0] for key in sorted_keys] + [sorted_keys[-1][-1]]))
dendro = dendrogram(Z, labels=labels)
It gives me a dendrogram. What is the code to get clusters and name of objects in each cluster, (if I cut the dendrogram in distance 2)?
You can use the scipy function cut_tree, here's an example for your data:
from scipy.cluster.hierarchy import cut_tree, dendrogram, linkage
obj_distances = {
('DN1357_i2', 'DN1357_i5'): 1.0,
('DN1357_i2', 'DN10172_i1'): 28.0,
('DN1357_i2', 'DN1357_i1'): 8.0,
('DN1357_i5', 'DN1357_i1'): 2.0,
('DN1357_i5', 'DN10172_i1'): 34.0,
('DN1357_i1', 'DN10172_i1'): 38.0,
}
keys = [sorted(k) for k in obj_distances.keys()]
values = obj_distances.values()
sorted_keys, distances = zip(*sorted(zip(keys, values)))
Z = linkage(distances)
labels = sorted(set([key[0] for key in sorted_keys] + [sorted_keys[-1][-1]]))
dendro = dendrogram(Z, labels=labels)
members = dendro['ivl']
clusters = cut_tree(Z, height=2)
cluster_ids = [c[0] for c in clusters]
cluster_ids.sort(reverse=True)
for k in range(max(cluster_ids) + 1):
print(f"Cluster {k}")
for i, c in enumerate(cluster_ids):
if c == k:
print(f"{members[i]}")
print('\n')
For cutting the tree at a height of 2, the output is:
Cluster 0
DN10172_i1
Cluster 1
DN1357_i1
Cluster 2
DN1357_i2
DN1357_i5