I'm looking for a fast way to get the sum of a column in a table based on list of indexes in another table.
Here's a reproducible simple example: First create an edge table
fake_edges <- st_sf(data.frame(id=c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'),
weight=c(102.1,98.3,201.0,152.3,176.4,108.6,151.4,186.3,191.2),
soc=c(-0.1,0.7,1.1,0.2,0.5,-0.2,0.4,0.3,0.8),
geometry=st_sfc(st_linestring(rbind(c(1,1), c(1,2))),
st_linestring(rbind(c(1,2), c(2,2))),
st_linestring(rbind(c(2,2), c(2,3))),
st_linestring(rbind(c(1,1), c(2,1))),
st_linestring(rbind(c(2,1), c(2,2))),
st_linestring(rbind(c(2,2), c(3,2))),
st_linestring(rbind(c(1,1), c(1,0))),
st_linestring(rbind(c(1,0), c(0,0))),
st_linestring(rbind(c(0,0), c(0,1)))
)))
tm_shape(fake_edges, ext = 1.3) +
tm_lines(lwd = 2) +
tm_shape(st_cast(fake_edges, "POINT")) +
tm_dots(size = 0.3) +
tm_graticules(lines = FALSE)
Then create a network out of the table, and find the least expensive paths from first node to all nodes.
fake_net <- as_sfnetwork(fake_edges)
fake_paths <- st_network_paths(fake_net,
from=V(fake_net)[1],
to=V(fake_net),
weights='weight', type='shortest')
Now, what I'm trying to improve is the process of finding for each row of that fake_paths
table
id
of the last edge in the pathsoc
for all the edges of the pathWhat I did was the following (it's quick here with the 9 lines, but takes a long while on a large network):
# Transforming to data.tables makes things a bit faster
fake_p <- as.data.table(fake_paths)
fake_e <- as.data.table(fake_edges)
# ID of the last edge on the path
fake_p$id <- apply(fake_p, 1, function(df) unlist(fake_e[df$edge_paths %>% last(), 'id'], use.names=F))
# Sum of soc
fake_p$result <- to_vec(for (edge in 1:nrow(fake_p)) fake_e[unlist(fake_p[edge, 'edge_paths']), soc] %>% sum())
Ultimately, what I want is that sum of soc
that I call result
to be joined backed with the original fake_edges
fake_e = left_join(fake_e,
fake_p %>% select(id, result) %>% drop_na(id) %>% mutate(id=as.character(id), result=as.numeric(result)),
by='id')
fake_edges$result <- fake_e$result
fake_edges
Simple feature collection with 9 features and 4 fields
Geometry type: LINESTRING
Dimension: XY
Bounding box: xmin: 0 ymin: 0 xmax: 3 ymax: 3
CRS: NA
id | weight | soc | geometry | result |
---|---|---|---|---|
a | 102.1 | -0.1 | LINESTRING (1 1, 1 2) | -0.1 |
b | 98.3 | 0.7 | LINESTRING (1 2, 2 2) | 0.6 |
c | 201.0 | 1.1 | LINESTRING (2 2, 2 3) | 1.7 |
d | 152.3 | 0.2 | LINESTRING (1 1, 2 1) | 0.2 |
e | 176.4 | 0.5 | LINESTRING (2 1, 2 2) | NA |
f | 108.6 | -0.2 | LINESTRING (2 2, 3 2) | 0.4 |
g | 151.4 | 0.4 | LINESTRING (1 1, 1 0) | 0.4 |
h | 186.3 | 0.3 | LINESTRING (1 0, 0 0) | 0.7 |
i | 191.2 | 0.8 | LINESTRING (0 0, 0 1) | 1.5 |
I'm not sure what you are trying to accomplish, but the following procedure should correspond to the process that you describe in the first post.
Load packages
suppressPackageStartupMessages({
library(sf)
library(igraph)
library(tidygraph)
library(sfnetworks)
library(tibble)
})
Define fake data
fake_edges <- st_sf(
data.frame(
id = c('a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i'),
weight = c(102.1, 98.3, 201.0, 152.3, 176.4, 108.6, 151.4, 186.3, 191.2),
soc = c(-0.1, 0.7, 1.1, 0.2, 0.5, -0.2, 0.4, 0.3, 0.8),
geometry = st_sfc(
st_linestring(rbind(c(1,1), c(1,2))),
st_linestring(rbind(c(1,2), c(2,2))),
st_linestring(rbind(c(2,2), c(2,3))),
st_linestring(rbind(c(1,1), c(2,1))),
st_linestring(rbind(c(2,1), c(2,2))),
st_linestring(rbind(c(2,2), c(3,2))),
st_linestring(rbind(c(1,1), c(1,0))),
st_linestring(rbind(c(1,0), c(0,0))),
st_linestring(rbind(c(0,0), c(0,1)))
)
)
)
Create a network out of the table, and find the shortest path from first node to all other nodes
fake_net <- as_sfnetwork(fake_edges)
fake_paths <- st_network_paths(
x = fake_net,
from = V(fake_net)[1],
to = V(fake_net),
weights = 'weight',
type = 'shortest'
)
Extract the id of the last edge in the path
idx_numeric <- unlist(lapply(fake_paths[["edge_paths"]], tail, n = 1L))
id <- fake_edges[["id"]][idx_numeric]
For each path, compute the sum of soc for all the edges of the path
result <- tapply(
X = fake_edges[["soc"]][unlist(fake_paths[["edge_paths"]])],
INDEX = rep(seq_len(nrow(fake_paths)), times = lengths(fake_paths[["edge_paths"]])),
FUN = sum
)
Create a tibble object with columns id and result
my_tbl <- tibble(
id = id,
result = result
)
Run the left join
left_join(fake_edges, my_tbl)
#> Joining, by = "id"
#> Simple feature collection with 9 features and 4 fields
#> Geometry type: LINESTRING
#> Dimension: XY
#> Bounding box: xmin: 0 ymin: 0 xmax: 3 ymax: 3
#> CRS: NA
#> id weight soc result geometry
#> 1 a 102.1 -0.1 -0.1 LINESTRING (1 1, 1 2)
#> 2 b 98.3 0.7 0.6 LINESTRING (1 2, 2 2)
#> 3 c 201.0 1.1 1.7 LINESTRING (2 2, 2 3)
#> 4 d 152.3 0.2 0.2 LINESTRING (1 1, 2 1)
#> 5 e 176.4 0.5 NA LINESTRING (2 1, 2 2)
#> 6 f 108.6 -0.2 0.4 LINESTRING (2 2, 3 2)
#> 7 g 151.4 0.4 0.4 LINESTRING (1 1, 1 0)
#> 8 h 186.3 0.3 0.7 LINESTRING (1 0, 0 0)
#> 9 i 191.2 0.8 1.5 LINESTRING (0 0, 0 1)
I really don't understand the ideas behind the algorithm (so I'm not sure how to simulate a larger network), but I think the same “algorithm” works pretty well on larger networks, can you test it?