machine-learningjuliadistributionreinforcement-learningmarkov-decision-process

no method matching logpdf when sampling from uniform distribution


I am trying to use reinforcement learning in julia to teach a car that is constantly being accelerated backwards (but with a positive initial velocity) to apply brakes so that it gets as close to a target distance as possible before moving backwards.

To do this, I am making use of POMDPs.jl and crux.jl which has many solvers (I'm using DQN). I will list what I believe to be the relevant parts of the script first, and then more of it towards the end.

To define the MDP, I set the initial position, velocity, and force from the brakes as a uniform distribution over some values.

@with_kw struct SliderMDP <: MDP{Array{Float32}, Array{Float32}}
        x0 = Distributions.Uniform(0., 80.)# Distribution to sample initial position
        v0 = Distributions.Uniform(0., 25.) # Distribution to sample initial velocity
        d0 = Distributions.Uniform(0., 2.) # Distribution to sample brake force
        ...
end

My state holds the values of (position, velocity, brake force), and the initial state is given as:

function POMDPs.initialstate(mdp::SliderMDP)
    ImplicitDistribution((rng) -> Float32.([rand(rng, mdp.x0), rand(rng, mdp.v0), rand(rng, mdp.d0)]))
end

Then, I set up my DQN solver using crux.jl and called a function to solve for the policy

solver_dqn = DQN(π=Q_network(), S=s, N=30000)
policy_dqn = solve(solver_dqn, mdp)

calling solve() gives me the error MethodError: no method matching logpdf(::Distributions.Categorical{Float64, Vector{Float64}}, ::Nothing). I am quite sure that this comes from the initial state sampling, but I am not sure why or how to fix it. I have only been learning RL from various books and online lectures for a very short time, so any help regarding the error or my the model I set up (or anything else I'm oblivious to) would be appreciated.


More comprehensive code:

Packages:

using POMDPs
using POMDPModelTools
using POMDPPolicies
using POMDPSimulators

using Parameters
using Random

using Crux
using Flux

using Distributions

Rest of it:

@with_kw struct SliderMDP <: MDP{Array{Float32}, Array{Float32}}
    x0 = Distributions.Uniform(0., 80.)# Distribution to sample initial position
    v0 = Distributions.Uniform(0., 25.) # Distribution to sample initial velocity
    d0 = Distributions.Uniform(0., 2.) # Distribution to sample brake force
    
    m::Float64 = 1.
    tension::Float64 = 3.
    dmax::Float64 = 2.
    target::Float64 = 80.
    dt::Float64 = .05
    
    γ::Float32 = 1.
    actions::Vector{Float64} = [-.1, 0., .1]
end
    
function POMDPs.gen(env::SliderMDP, s, a, rng::AbstractRNG = Random.GLOBAL_RNG)
    x, ẋ, d = s

    if x >= env.target
        a = .1
    end
    if d+a >= env.dmax || d+a <= 0
        a = 0.
    end
    
    force = (d + env.tension) * -1
    ẍ = force/env.m
    
    # Simulation
    x_ = x + env.dt * ẋ
    ẋ_ = ẋ + env.dt * ẍ
    d_ = d + a

    sp = vcat(x_, ẋ_, d_)
    reward = abs(env.target - x) * -1
        
    return (sp=sp, r=reward)
end

    

function POMDPs.initialstate(mdp::SliderMDP)
    ImplicitDistribution((rng) -> Float32.([rand(rng, mdp.x0), rand(rng, mdp.v0), rand(rng, mdp.d0)]))
end
    
POMDPs.isterminal(mdp::SliderMDP, s) = s[2] <= 0
POMDPs.discount(mdp::SliderMDP) = mdp.γ

mdp = SliderMDP();
s = state_space(mdp); # Using Crux.jl

function Q_network()
    layer1 = Dense(3, 64, relu)
    layer2 = Dense(64, 64, relu)
    layer3 = Dense(64, length(3))
    return DiscreteNetwork(Chain(layer1, layer2, layer3), [-.1, 0, .1])
end

solver_dqn = DQN(π=Q_network(), S=s, N=30000) # Using Crux.jl
policy_dqn = solve(solver_dqn, mdp) # Error comes here

Stacktrace:

policy_dqn
MethodError: no method matching logpdf(::Distributions.Categorical{Float64, Vector{Float64}}, ::Nothing)

Closest candidates are:

logpdf(::Distributions.DiscreteNonParametric, !Matched::Real) at C:\Users\name\.julia\packages\Distributions\Xrm9e\src\univariate\discrete\discretenonparametric.jl:106

logpdf(::Distributions.UnivariateDistribution{S} where S<:Distributions.ValueSupport, !Matched::AbstractArray) at deprecated.jl:70

logpdf(!Matched::POMDPPolicies.PlaybackPolicy, ::Any) at C:\Users\name\.julia\packages\POMDPPolicies\wMOK3\src\playback.jl:34

...

logpdf(::Crux.ObjectCategorical, ::Float32)@utils.jl:16
logpdf(::Crux.DistributionPolicy, ::Vector{Float64}, ::Float32)@policies.jl:305
var"#exploration#133"(::Base.Iterators.Pairs{Union{}, Union{}, Tuple{}, NamedTuple{(), Tuple{}}}, ::typeof(Crux.exploration), ::Crux.DistributionPolicy, ::Vector{Float64})@policies.jl:302
exploration@policies.jl:297[inlined]
action(::Crux.DistributionPolicy, ::Vector{Float64})@policies.jl:294
var"#exploration#136"(::Crux.DiscreteNetwork, ::Int64, ::typeof(Crux.exploration), ::Crux.MixedPolicy, ::Vector{Float64})@policies.jl:326
var"#step!#173"(::Bool, ::Int64, ::typeof(Crux.step!), ::Dict{Symbol, Array}, ::Int64, ::Crux.Sampler{Main.workspace#2.SliderMDP, Vector{Float32}, Crux.DiscreteNetwork, Crux.ContinuousSpace{Tuple{Int64}}, Crux.DiscreteSpace})@sampler.jl:55
var"#steps!#174"(::Int64, ::Bool, ::Int64, ::Bool, ::Bool, ::Bool, ::typeof(Crux.steps!), ::Crux.Sampler{Main.workspace#2.SliderMDP, Vector{Float32}, Crux.DiscreteNetwork, Crux.ContinuousSpace{Tuple{Int64}}, Crux.DiscreteSpace})@sampler.jl:108
var"#fillto!#177"(::Int64, ::Bool, ::typeof(Crux.fillto!), ::Crux.ExperienceBuffer{Array}, ::Crux.Sampler{Main.workspace#2.SliderMDP, Vector{Float32}, Crux.DiscreteNetwork, Crux.ContinuousSpace{Tuple{Int64}}, Crux.DiscreteSpace}, ::Int64)@sampler.jl:156
solve(::Crux.OffPolicySolver, ::Main.workspace#2.SliderMDP)@off_policy.jl:86
top-level scope@Local: 1[inlined]

Solution

  • Short answer:

    Change your output vector to Float32 i.e. Float32[-.1, 0, .1].

    Long answer:

    Crux creates a Distribution over your network's output values, and at some point (policies.jl:298) samples a random value from it. It then converts this value to a Float32. Later (utils.jl:15) it does a findfirst to find the index of this value in the original output array (stored as objs within the distribution), but because the original array is still Float64, this fails and returns a nothing. Hence the error.

    I believe this (converting the sampled value but not the objs array and/or not using approximate equality check i.e. findfirst(isapprox(x), d.objs)) to be a bug in the package, and would encourage you to raise this as an issue on Github.