armcortex-misrirqtimestamping

How to know whether an IRQ was served immediately on ARM Cortex M0+ (or any other MCU)


For my application (running on an STM32L082) I need accurate (relative) timestamping of a few types of interrupts. I do this by running a timer at 1 MHz and taking its count as soon as the ISR is run. They are all given the highest priority so they pre-empt less important interrupts. The problem I'm facing is that they may still be delayed by other interrupts at the same priority and by code that disables interrupts, and there seems to be no easy way to know this happened. It is no problem that the ISR was delayed, as long as I know that the particular timestamp is not accurate because of this.

My current approach is to let each ISR and each block of code with interrupts disabled check whether interrupts are pending using NVIC->ISPR[0] and flagging this for the pending ISR. Each ISR checks this flag and, if needed, flags the timestamp taken as not accurate.

Although this works, it feels like it's the wrong way around. So my question is: is there another way to know whether an IRQ was served immediately?

The IRQs in question are EXTI4-15 for a GPIO pin change and RTC for the wakeup timer. Unfortunately I'm not in the position to change the PCB layout and use TIM input capture on the input pin, nor to change the MCU used.

update

The fundamental limit to accuracy in the current setup is determined by the nature of the internal RTC calibration, which periodically adds/removes 32kHz ticks, leading to ~31 µs jitter. My goal is to eliminate (or at least detect) additional timestamping inaccuracies where possible. Having interrupts blocked incidentally for, say, 50+ µs is hard to avoid and influences measurements, hence the need to at least know when this occurs.

update 2

To clarify, I think this is a software question, asking if a particular feature exists and if so, how to use it. The answer I am looking for is one of: "yes it is possible, just check bit X of register Y", or "no it is not possible, but MCU ... does have such a feature, called ..." or "no, such a feature is generally not available on any platform (but the common workaround is ...)". This information will guide me (and future readers) towards a solution in software, and/or requirements for better hardware design.


Solution

  • In general

    The ideal solution for accurate timestamping is to use timer capture hardware (built-in to the microcontroller, or an external implementation). Aside from that, using a CPU with enough priority levels to make your ISR always the highest priority could work, or you might be able to hack something together by making the DMA engine sample the GPIO pins (specifics below).

    Some microcontrollers have connections between built-in peripherals that allow one peripheral to trigger another (like a GPIO pin triggering timer capture even though it isn't a dedicated timer capture input pin). Manufacturers have different names for this type of interconnection, but a general overview can be found on Wikipedia, along with a list of the various names. Exact capabilities vary by manufacturer.

    I've never come across a feature in a microcontroller for indicating if an ISR was delayed by a higher priority ISR. I don't think it would be a commonly-used feature, because your ISR can be interrupted by a higher priority ISR at any moment, even after you check the hypothetical was_delayed flag. A higher priority ISR can often check if a lower priority interrupt is pending though.

    For your specific situation

    A possible approach is to use a timer and DMA (similar to audio streaming, double-buffered/circular modes are preferred) to continuously sample your GPIO pins to a buffer, and then you scan the buffer to determine when the pins changed. Note that this means the CPU must scan the buffer before it is overwritten again by DMA, which means the CPU can only sleep in short intervals and must keep the timer and DMA clocks running. ST's AN4666 is a relevant document, and has example code here (account required to download example code). They're using a different microcontroller, but they claim the approach can be adapted to others in their lineup.

    Otherwise, with your current setup, I don't think there is a better solution than the one you're using (the flag that's set when you detect a delay). The ARM Cortex-M0+ NVIC does not have a feature to indicate if an ISR was delayed.

    A refinement to your current approach might be making the ISRs as short as possible, so they only do the timestamp collection and then put any other work into a queue for processing by the main application at a lower priority (only applicable if the work is more complex than the enqueue operation, and if the work isn't time-sensitive). Eliminating or making the interrupts-disabled regions short should also help.