I have CSV file as shown:
name,age,languages,experience
'Alice',31,['C++', 'Java'],2
'Bob',34,['Java', 'Python'],2
'Smith',35,['Ruby', 'Java'],3
'David',36,['C', 'Java', 'R']4
While loading the data, by default all the columns are loading as strings.
scala> val df = spark.read.format("csv").option("header",true).load("data.csv")
df: org.apache.spark.sql.DataFrame = [name: string, age: string ... 2 more fields]
scala> df.show()
+-------+---+------------------+----------+
| name|age| languages|experience|
+-------+---+------------------+----------+
|'Alice'| 31| ['C++', 'Java']| 2|
| 'Bob'| 34|['Java', 'Python']| 2|
|'Smith'| 35| ['Ruby', 'Java']| 3|
|'David'| 36|['C', 'Java', 'R']| 4|
+-------+---+------------------+----------+
scala> df.printSchema()
root
|-- name: string (nullable = true)
|-- age: string (nullable = true)
|-- languages: string (nullable = true)
|-- experience: string (nullable = true)
So I defined a custom schema as String
, Integer
, Array
, Integer
datatypes:
import org.apache.spark.sql.types.{StructField, StructType, StringType, ArrayType, IntegerType}
val custom_schema = new StructType(Array(StructField("name", StringType), StructField("age", IntegerType), StructField("languages", ArrayType(StringType)), StructField("experience", IntegerType)))
When I load the data using the custom schema, it is throwing error
Terminal screenshot after running the command
scala> val df = spark.read.format("csv").option("header",true).schema(custom_schema).load("data.csv")
org.apache.spark.sql.AnalysisException: CSV data source does not support array<string> data type.
at org.apache.spark.sql.execution.datasources.DataSourceUtils$.$anonfun$verifySchema$1(DataSourceUtils.scala:67)
at org.apache.spark.sql.execution.datasources.DataSourceUtils$.$anonfun$verifySchema$1$adapted(DataSourceUtils.scala:65)
at scala.collection.Iterator.foreach(Iterator.scala:941)
at scala.collection.Iterator.foreach$(Iterator.scala:941)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1429)
at scala.collection.IterableLike.foreach(IterableLike.scala:74)
at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
at org.apache.spark.sql.types.StructType.foreach(StructType.scala:102)
at org.apache.spark.sql.execution.datasources.DataSourceUtils$.verifySchema(DataSourceUtils.scala:65)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:445)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:326)
at org.apache.spark.sql.DataFrameReader.$anonfun$load$3(DataFrameReader.scala:308)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:308)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:240)
... 47 elided
How to load the data to spark data frames by making a column as an array?
You could transform it to an array after reading it from the file by removing the brackets ([
,]
) using regexp_replace
and splitting the remaining string by commas (,
) using split
eg..
val df = spark.read.format("csv").option("header",true).load("data.csv")
val transformedDf = df.withColumn("languages",
split(
regexp_replace(col("languages"),"\\[|\\]",""),
","
)
)