I have installed pytorch
version 1.10.0 alongside torchtext
, torchvision
and torchaudio
using conda. My PyTorch is cpu-only, and I have experimented with both conda install pytorch-mutex -c pytorch
and conda install pytorch cpuonly -c pytorch
to install the cpuonly version, both yielding the same eror that I will describe in the following lines.
I have also installed pytorch-lightning
in conda, alongside jsonargparse[summaries
via pip in the environment.
I have written this code to see whether LightningCLI
works or not.
# script.py
import torch
import pytorch_lightning as pl
class BoringModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
def training_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("train_loss", loss)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("valid_loss", loss)
def test_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("test_loss", loss)
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
cli = LightningCLI(BoringModel)
But when I run it using python -m script fit --print_config
, I get the following error:
ImportError: /home/farhood/miniconda3/envs/pytorch_dummy_environment/lib/python3.9/site-packages/torchtext/_torchtext.so: undefined symbol: _ZNK5torch3jit6MethodclESt6vectorIN3c106IValueESaIS4_EERKSt13unordered_mapISsS4_St4hashISsESt8equal_toISsESaISt4pairIKSsS4_EEE
Which indicates that there is something broken with my Conda installation, and it's probably related to torchtext
somehow.
This is the versions of the installed torch related packages:
pytorch 1.10.0 cpu_py39hc5866cc_0 conda-forge
pytorch-lightning 1.5.2 pyhd8ed1ab_0 conda-forge
pytorch-mutex 1.0 cuda pytorch
torchaudio 0.10.0 py39_cpu pytorch
torchmetrics 0.6.0 pyhd8ed1ab_0 conda-forge
torchtext 0.11.0 py39 pytorch
torchvision 0.11.1 py39_cpu pytorch
So in order to fix the problem, I had to change my environment.yaml
in order to force pytorch
to install from the pytorch
channel.
So this is my environment.yaml
now:
channels:
- defaults
- pytorch
- conda-forge
dependencies:
# ML section
- pytorch::pytorch
- pytorch::torchtext
- pytorch::torchvision
- pytorch::torchaudio
- pytorch::cpuonly
- mlflow=1.21.0
- pytorch-lightning>=1.5.2
- pip:
- jsonargparse[signatures]
Using this I don't get the error anymore. The pytorch related stuff installed now is:
cpuonly 2.0 0 pytorch
pytorch 1.10.0 py3.9_cpu_0 pytorch
pytorch-lightning 1.5.2 pyhd8ed1ab_0 conda-forge
pytorch-mutex 1.0 cpu pytorch
torchaudio 0.10.0 py39_cpu [cpuonly] pytorch
torchtext 0.11.0 py39 pytorch
torchvision 0.11.1 py39_cpu [cpuonly] pytorch