I have a plot with a left and right y-axis created with pandas.DataFrame.plot
and specifying secondary_y=True
.
I want to increase the font sizes of the y-axis tick params, but it seems that only the left side y-axis font size is increasing.
import pandas as pd
import numpy as np
# sample dataframe
sample_length = range(1, 2+1)
rads = np.arange(0, 2*np.pi, 0.01)
data = np.array([np.sin(t*rads) for t in sample_length])
df = pd.DataFrame(data.T, index=pd.Series(rads.tolist(), name='radians'), columns=[f'freq: {i}x' for i in sample_length])
# display(df.head(3))
freq: 1x freq: 2x
radians
0.00 0.000000 0.000000
0.01 0.010000 0.019999
0.02 0.019999 0.039989
# plot
ax1 = df.plot(y='freq: 1x', ylabel='left-Y', figsize=(8, 5))
df.plot(y='freq: 2x', secondary_y=True, ax=ax1)
ax1.tick_params(axis='both', labelsize=20)
What is the way to increase the font size for the right y-axis?
secondary_y
axes with ax2.set_ylabel('right-Y', fontsize=30)
, or access it from ax1
with the .right_ax
attribute. dir(ax1)
will show all of the available methods for ax1
.
.right_ax
does not work if ax2
is implemented with .twinx()
:
ax2 = ax1.twinx()
and df.plot(y='freq: 2x', ax=ax2)
ax2.set_ylabel('right-Y', fontsize=30)
works with .twinx()
python 3.8.12
, pandas 1.3.4
, matplotlib 3.4.3
# plot the primary axes
ax1 = df.plot(y='freq: 1x', ylabel='left-Y', figsize=(8, 5))
# add the secondary y axes and assign it
ax2 = df.plot(y='freq: 2x', secondary_y=True, ax=ax1)
# adjust the ticks for the primary axes
ax1.tick_params(axis='both', labelsize=14)
# adjust the ticks for the secondary y axes
ax2.tick_params(axis='y', labelsize=25)
# set the primary (left) y label
ax1.set_ylabel('left Y', fontsize=18)
# set the secondary (right) y label from ax1
ax1.right_ax.set_ylabel('right-Y', fontsize=30)
# alternatively (only use one): set the secondary (right) y label from ax2
# ax2.set_ylabel('right-Y', fontsize=30)
plt.show()
secondary_y
, there's no need to specify y=
, and secondary_y=['...', '...', ..., '...']
can be a list.ax2 = ax.right_ax
, then ax2
can be used directly.ax = df.plot(ylabel='left-Y', secondary_y=['freq: 2x'], figsize=(8, 5))
ax.tick_params(axis='both', labelsize=14)
ax.right_ax.tick_params(axis='y', labelsize=25)
ax.set_ylabel('left Y', fontsize=18)
# set the right y axes
ax.right_ax.set_ylabel('right-Y', fontsize=30)